Zoofast.fr offre une solution complète pour toutes vos questions. Rejoignez notre communauté de connaisseurs pour trouver les réponses dont vous avez besoin sur n'importe quel sujet ou problème.

Bonjour j'aurais besoin d'aide pour ce problème:
Voici un programme de calcul:
-Choisir un nombre de départ
-Ajouter 6
-Multiplier par 5
-Soustraire le nombre de départ
-Soustraire le triple de 10

Vadim affirme à Samia la chose suivant:
"Si on choisit un nombre entier positif au départ, on obtient toujours un nombre pair à la fin du calcul."
Samia reste perplexe et pense que ce n'est pas toujours vrai
Qui a raison? Donner une preuve

Sagot :

Mozi

Bonjour,

Etape 1 : soit x le nombre choisi

Etape 2 : x + 6

Etape 3 : 5 * (x + 6)

Etape 4 : 5 * (x + 6) - x

Etape 5 : 5 * (x + 6) - x - 3*10

On note R(x) ce résultat, soit R(x) = 5 * (x + 6) - x - 3*10

On a R(x) = 5x + 30 - x - 30 = 4x

Le programme consiste donc a multiplier le nombre de départ par 4. Or un multiple de 4 est forcément un nombre pair. Vadim a donc bien raison.

Votre participation nous est précieuse. Continuez à partager des informations et des solutions. Cette communauté se développe grâce aux contributions incroyables de membres comme vous. Merci de visiter Zoofast.fr. Revenez bientôt pour découvrir encore plus de réponses à toutes vos questions.