Zoofast.fr fournit une plateforme conviviale pour partager et obtenir des connaissances. Obtenez des réponses détaillées et bien informées de la part de notre communauté de professionnels expérimentés.

Bonsoir,
J’ai un exercice de physique a faire pour lundi ( je suis en terminale) mais je bloque car je n’arrive pas à déterminer une valeur: j’ai compris comment résoudre mon exercice mais sans cette valeur je suis bloquée, il s’agit de hA. Je ne comprends pas comment je pourrais la trouver ( j’ai essayé de voir par de la trigonométrie ou meme avec la conservation de l’énergie mécanique mais je bloque tjrs).
Merci de votre réponse.

Bonsoir Jai Un Exercice De Physique A Faire Pour Lundi Je Suis En Terminale Mais Je Bloque Car Je Narrive Pas À Déterminer Une Valeur Jai Compris Comment Résoud class=

Sagot :

Réponse :

Explications :

Bonjour,

L’équation de la trajectoire est :

OG z (x)  = - X² * g / (2 * (Vo * cosα°)² ) + X * tanα° + H

Voir sa démonstration en bas de la page.

1) Quelle valeur de H (= hauteur du lancer) pour que le lob reste dans le terrain ?

OGz = 0 pour X = 23.8 m, α = 40° et Vo = 15 m/s

H =  23.8² * 9.81 / (2 * (15 * cos40°)² ) - 23.8 * tan40° = 1.072 m

2) Au droit du point C soit x = 11.9 + 2 = 13.9 m a quelle hauteur passe la balle ?

OG z (x)  = - 13.9² * g / (2 * (15 * cos40°)² ) + 13.9 * tan40° + 1.072 = 5.56 m donc bien au-dessus des 3 m du joueur positionné en C

Conclusion : Le lob est réussi !

Vérifiez mes calculs !!

------------------------------------------------------------------------------------------

Démonstration de l’équation de la trajectoire :

Système étudié : Balle, centre de gravité G

Référentiel : terrestre considéré galiléen

Vo a pour coordonnées dans le repère (O; Ox, Oz) :  

Vo x = Vo * cos α° et Vo z = Vo * sinα°

Résistance de l'air négligée donc frottements de l'air et poussée d'Archimède négligées (bille en chute libre) donc : ∑ Forces = P bille

Seconde loi de Newton :

∑ Forces = P bille = m * g = m * aG donc  aG = g

Par projection sur les 2 axes du repère (O; Ox, Oz), les 2 équations différentielles du mouvement :

aG x = 0 et aG z = -g

par intégration , on a :

VG x = K1

VG z = -g * t + K2

Où  K1 et K2 sont des constantes qu'on détermine grâce aux conditions initiales :

t = 0, VG x(0) = Vo * cosα° donc K1 = Vo * cosα°

t = 0, VG z(0) = Vo * sinα°  donc K2 = Vo * sinα°  

soit : VG x = Vo * cosα° et VG z = -g * t + Vo * sinα°  

par intégration :

OG x = Vo * cos40° * t + K3

OG z = -1/2 * g * t² + Vo * sin40° * t + K4

Où  K3 et K4 sont des constantes qu'on détermine grâce aux conditions initiales :

a t = 0, OG x(0) = 0 donc K3 = 0

a t = 0, OG z(0) = H (hauteur du lancé)

On obtient donc les équations horaires paramétriques du mouvement :

OG x = Vo * cosα° * t et  

OG z = -1/2 * g * t² + Vo * sinα° * t + H

Le mouvement de la balle est donc composé d'un :

- mouvement rectiligne uniforme de vitesse constante V1 sur (Ox)

- mouvement uniformément varié (chute libre verticale d'accélération g) de vitesse initiale non nulle sur (Oz).

Équation de la trajectoire : éliminons le temps :

OG x = Vo * cosα° * t  donc t = X / (Vo * cosα°)

reportons ce temps dans OG z (x)  soit :  

OG z (x)  = -g/2 * (X / (Vo * cosα°)² + Vo * sinα° * X / (Vo * cosα°) + H

Equation de la trajectoire :

OG z (x)  = - X² * g / (2 * (Vo * cosα°)² ) + X * tanα° + H