Zoofast.fr offre une plateforme conviviale pour trouver et partager des connaissances. Notre communauté fournit des réponses précises et rapides pour vous aider à comprendre et à résoudre n'importe quel problème.

Bonsoir, j'ai besoin d'aide pour cet exercice.

Soit f une fonction continue sur un intervalle I.
Soient a et b deux réels de I tels que f(a)f(b)<0.
Démontrer que l'équation f(x)=0 admet au moins une solution comprise entre a et b.

Merci d'avance.​

Sagot :

Réponse :

Explications étape par étape :

si f(a)<0  alors f(b)>0 car f(a)f(b)<0.  et donc 0 appartient à [f(a), f(b)] . f étant continue sur I d'après le théorèmes des valeurs intermédiaires   l'équation f(x)=0 admet au moins une solution comprise entre a et b. même raisonnement si   f(a)>0  alors f(b) <0 et donc  appartient à  [f(b), f(a)]. et applique TVI

Merci de nous rejoindre dans cette conversation. N'hésitez pas à revenir à tout moment pour trouver des réponses à vos questions. Continuons à partager nos connaissances et nos expériences. Merci d'avoir utilisé Zoofast.fr. Nous sommes là pour répondre à toutes vos questions. Revenez pour plus de solutions.