Connectez-vous avec une communauté de passionnés sur Zoofast.fr. Obtenez des réponses précises et détaillées à vos questions de la part de nos membres de la communauté bien informés et dévoués.

Bonjour besoin d’aide mon niveau en mathématiques est très faible soit (Un) une suite définie pour tout entier naturel n par Un= 1 sur 2n+1. Comparer Un+1 et Un. Merci d’avance

Sagot :

Réponse :

bonjour je pense que c'est Un=1/(2n+1)

Explications étape par étape :

on va rechercher le signe U(n+1)-Un

U(n+1)=1/[2(n+1)+1]=1/(2n+3)

U(n+1)-Un= 1/(2n+3)-1/(2n+1)

on met au même dénominateur

=[2n+1)-(2n+3)](2n+1)(2n+3)=-2/(2n+1)(2n+3)

n étant >0 le dénominateur  est >0  donc U(n+1)-Un est <0

la suite  Un est  décroissante.

Nota: La suite Un=1/(2n+1) est explicite (fonction de n) elle se comporte comme la fonction f(x)=1/(2x+1)  avec x appartenant à N

sa dérivée f'(x)=-2(2x+1)² est <0, f(x) est donc décroissante et il en est de même pour la suite Un.

caylus

Réponse :

Bonjour,

Explications étape par étape :

[tex]u_{n+1}-u{n}=\dfrac{1}{2(n+1)+1} -\dfrac{1}{2n+1} \\\\\dfrac{2n+1-(2n+3)}{(2n+1)(2n+3)} =-\dfrac{2}{(2n+1)(2n+3)} < 0\\(car\ n > 0)\\[/tex]

La suite est donc décroissante [tex]u_{n+1} < u_n\\[/tex] mais toujours positive

sa limite est donc 0

View image caylus