Zoofast.fr: votre ressource incontournable pour des réponses expertes. Bénéficiez de conseils étape par étape pour toutes vos questions techniques, grâce aux membres bien informés de notre communauté.

bonjour, j’ai besoin d’aide. Merci d’avance.

Énigme : "Combien y a-t-il d'entiers naturels à quatre chiffres dont le produit des
chiffres a exactement trois diviseurs?"
J'ai terminé

Sagot :

Réponse :

il y a 32 entiers naturels à 4 chiffres dont

  le produit des chiffres admet 3 diviseurs ! ☺

Explications étape par étape :

le nombre 4 a bien 3 diviseurs : 1 ; 2 ; et 4   ♥

le nb 9 a aussi 3 diviseurs : 1 ; 3 ; et 9   ♥

le nb 25 a aussi 3 diviseurs   ♥

le nb 49 a encore 3 diviseurs   ♥

■ on doit avoir le produit des 4 chiffres égal à 4 ; 9 ; 25 ; ou 49 .

■ donc le nombre cherché est des "familles" de :

   1114    ;       1122 ; 1119 ; 1133 ; 1155 ; ou 1177

     ↓                ↓      

4 entiers    6 entiers

    2x4 + 4x6 = 8 + 24 = 32

■ conclusion :

  il y a 32 entiers naturels à 4 chiffres dont

  le produit des chiffres admet 3 diviseurs ! ☺