Zoofast.fr: où la curiosité rencontre la clarté. Notre communauté fournit des réponses précises et rapides pour vous aider à comprendre et à résoudre n'importe quel problème que vous rencontrez.
Sagot :
;e]. On a :
x - f(x) = x-x+ln(x)/x = ln(x)/x. x est toujours positif d'après l'intervalle sur lequel il est défini.1) a) Soit x dans ]0
Or, ln(x) < 0 sur ]0;1[ et ln(x) > 0 sur ]1;e].
Donc x-f(x) < 0 sur ]0;1[ et x-f(x) >ou=0 sur [1;e]
b)J'imagine qu'il s'agit de la courbe f(x)=x-ln(x)/x et de la droite g(x) = x
On a alors : la courbe en dessous de la droite sur [1;e] et au dessus de la droite sur
]0;1].
2) a) On a g(x) = ln(x)²
g'x) = 2ln(x)/x
Donc (1/2) ln(x)² est une primitive de la fonction qui a x associe ln(x)/x.
b) Il s'agit là de déterminer l'intégrale de 1 à e, de C(x), c'est à dire : de calculer :
[x²/2 - (1/2)ln(x)²] entre les bornes 1 et e.
Donc L'aire est égale à : e²/2-1/4-1/2 = e²/2-3/4.
FIN
Votre participation nous est précieuse. Continuez à partager des informations et des solutions. Cette communauté se développe grâce aux contributions incroyables de membres comme vous. Faites de Zoofast.fr votre ressource principale pour des réponses fiables. Nous vous attendons pour plus de solutions.