Rejoignez la communauté Zoofast.fr et obtenez les réponses dont vous avez besoin. Notre communauté est là pour fournir les réponses complètes et précises dont vous avez besoin pour prendre des décisions éclairées.

bonjour je suis en terminal et j'ai du mal avec les récurrence et notre prof nous a donner un exercice notée dessue et je ne comprend rien . merci pour l'aide en avance

Bonjour Je Suis En Terminal Et Jai Du Mal Avec Les Récurrence Et Notre Prof Nous A Donner Un Exercice Notée Dessue Et Je Ne Comprend Rien Merci Pour Laide En Av class=

Sagot :

Aeneas

Bonjour.

Le raisonnement par récurrence permet de démontrer une propriété pour tout entier n.

En gros, son fonctionnement c'est de dire :

- Ma propriété est bonne pour le premier entier n qui convient (en général 0).

C'est ce qu'on appelle l'initialisation.

- Je constate que si ma propriété est vraie pour un rang n quelconque, alors elle est vraie aussi au rang suivant (n+1). C'est ce qu'on appelle l'hérédité.

Donc ma propriété est vraie pour tout entier.

A présent revenons à notre exercice.

1) Ici notre suite est définie sur N. Son premier terme est donc u0.

On a u0 = 0

Donc 0 <= U0 <= 4 (Initialisation)

Soit n∈N un entier quelconque. Je suppose que ma propriété est vraie à ce rang. Donc 0 <= Un <= 4

J'ai donc 0<= 3Un <= 12

Donc 4 <= 3Un + 4 <= 16

Donc 2 <= √(3Un+4) <= 4 (car la fonction racine est croissante sur [4,16])

Donc 2 <= Un+1 <= 4

Donc par extension 0 <= Un+1 <= 4

La propriété est vraie au rang n+1.

(Hérédité)

On vient donc de démontrer par récurrence que ∀n∈N, 0 ≤ Un ≤ 4.

2) a) Soit n∈N. On a [tex]U_{n+1}^2 - U_{n}^2 = \sqrt{3U_n + 4} ^2 - U_n^2 = -U_n^2 + 3U_n + 4[/tex]

Et [tex]-(U_n + 1)(U_n - 4) = -Un^2 + 4 U_n - U_n + 4 = -U_n^2 + 3U_n + 4[/tex]

Donc [tex]U_{n+1}^2 - U_n^2 = -(U_n+1)(U_n-4)[/tex]

b) On sait que pour tout n ∈ N, 0≤Un≤4.

On étudie donc le signe de [tex]-(U_n+1)(U_n-4)[/tex] pour Un appartenant à [0;4].

On a Un+1 ≥ 0 et Un-4 ≤ 0

Donc  [tex]-(U_n+1)(U_n-4)[/tex] ≥ 0

Donc [tex]U_{n+1}^2 - U_n^2 \geq 0[/tex]

Donc [tex]U_{n+1}^2 \geq U_n^2[/tex]

Or pour tout n ∈ N, Un ≥ 0.

Donc [tex]U_{n+1} \geq U_n[/tex]

Donc (Un) est croissante sur N

Merci de nous rejoindre dans cette conversation. N'hésitez pas à revenir à tout moment pour trouver des réponses à vos questions. Continuons à partager nos connaissances et nos expériences. Zoofast.fr s'engage à répondre à toutes vos questions. Merci et revenez souvent pour des réponses mises à jour.