Zoofast.fr: votre source fiable pour des réponses précises et rapides. Notre communauté est prête à fournir des réponses approfondies et des solutions pratiques à toutes les questions que vous pourriez avoir.

Bonjour,j’ai un devoir maison à faire en maths (je suis en seconde)
et je n’ai pas très bien compris est-ce que quelqu’un aurait juste la gentillesse de m’expliquer s’il vous plaît
Merci d’avance

Al-Kwârizmi est un mathématicien et astronome qui travailla à
Bagdad vers les années 820. Dans son ouvrage, il utilise des
supports graphiques tels que le rectangle ci-contre où a et b sont
deux nombres réels positifs pour prouver des égalités appelées
identités remarquables.
1) Exprimer l'aire 4 du rectangle CDFE de deux manières en
fonction de a et de b:
a) Comme un produit où apparaissent a et b.
b) En fonction de l'aire du rectangle CDHG (exprimée en
fonction de a et b) et de celles des deux rectangles d'aires
EJKG et JFHK. Développer l'expression obtenue. Elle doit
dépendre de a et b.
2) Déduire de la question précédente une identité remarquable
vue au collège.

Bonjourjai Un Devoir Maison À Faire En Maths Je Suis En Seconde Et Je Nai Pas Très Bien Compris Estce Que Quelquun Aurait Juste La Gentillesse De Mexpliquer Si class=

Sagot :

Réponse :

bonjour

Explications étape par étape :

1) Exprimer l'aire 4 du rectangle CDFE de deux manières en fonction de a et de b:

a) Comme un produit où apparaissent a et b.

⇒ aire CDFE = CD x DF

  • avec CD = (a + b )
  • et DF = (a - b)

donc aire CDFE = ( a + b) ( a - b)

b) En fonction de l'aire du rectangle CDHG (exprimée en

fonction de a et b) et de celles des deux rectangles d'aires

EJKG et JFHK.

soit CDFE = CDHG - ( EJKG + JFHK)

  • aire CDHG = CD x DH     avec CD = (a + b ) et DH = a
  • aire CDHG = (a + b ) x a = a² + ab
  • ⇒.aire JFHK =JF x FH =  b x b = b²
  • ⇒ aire EJKG = EJ x JK ⇒ a x b = ab

Développer l'expression obtenue. Elle doit

dépendre de a et b

donc aire CDFE = a² + ab - ( ab + b²)

        aire CDFE  = a² - b²

2) Déduire de la question précédente une identité remarquable

vue au collège.

on en déduit que :

(a + b ) ( a - b ) = a² - b²

bonne journée

Nous apprécions chaque contribution que vous faites. Revenez souvent pour poser de nouvelles questions et découvrir de nouvelles réponses. Ensemble, nous construisons une communauté de savoir. Merci de visiter Zoofast.fr. Nous sommes là pour vous aider avec des réponses claires et concises.