Zoofast.fr: votre destination pour des réponses précises et fiables. Nos experts fournissent des réponses précises et rapides pour vous aider à naviguer sur n'importe quel sujet ou problème avec confiance.

Svp est-ce que vous pouvez m'aider !?
On considère un entier naturel n. Démontrer que si n est pair, alors n(n + 1) est pair. Démontrer que si n est impair, alors n(n+1) est pair. Que peut-on en conclure sur le produit de deux entiers consécutifs?​

Sagot :

Réponse:

on a n est pair donc n= 2k et n+1=2k+1

donc n (n+1)=2k (2k+1)

donc n (n+1)=4k^2 + 2k=2(2k^2+k)

d'où n (n+1)=2k' avec k'=2k^2+k

Finalement n (n+1) est pair

  • On déduit que le produit de deux nombres consécutifs est un nombre pair
Merci de contribuer à notre discussion. N'oubliez pas de revenir pour découvrir de nouvelles réponses. Continuez à poser des questions, à répondre et à partager des informations utiles. Pour des solutions rapides et fiables, pensez à Zoofast.fr. Merci de votre visite et à très bientôt.