Connectez-vous avec une communauté de passionnés sur Zoofast.fr. Rejoignez notre communauté d'experts pour obtenir des réponses détaillées et fiables à toutes vos questions.

M
Bonjour j’ai besoin d’aide :
Maths terminale :

Dans chaque cas, calculer la dérivée de la fonction
f, sans se soucier des intervalles sur lesquels elle est
dérivable.

Image jointe:

Merci d’avance !!!!

M Bonjour Jai Besoin Daide Maths Terminale Dans Chaque Cas Calculer La Dérivée De La Fonction F Sans Se Soucier Des Intervalles Sur Lesquels Elle Est Dérivable class=

Sagot :

Réponse :

1) f : x → (x + 3)√(x + 3)

f '(x) = (u*v)' = u'v + v'u

u(x) = x + 3  ⇒ u '(x) = 1

v(x) = √(x + 3) ⇒  v '(x) = 1/2√(x+3)

f '(x) = √(x+3) + (x+3)/2√(x + 3)

     = [2√(x+3) * √(x+3) + (x + 3)]/2√(x+3)      or  x + 3 > 0

     = [2(x+3) + x + 3)]/2√(x+3)

     = (2 x + 6 + x + 3)/2√(x+3)

f '(x) = (3 x + 9)/2√(x+3)

2)  f : x →  1/(x⁸ + 1)

f '(x) = - 8 x⁷/(x⁸+1)

3) f ; x → √(x² + 2 x + 1)

 f '(x) = u'/2√u

u (x) = x² + 2 x + 1  ⇒ u '(x) = 2 x + 2

f '(x) = (2 x + 2)/2√(x²+2 x + 1)  = 2(x + 1)/2√(x + 1)²      or  x + 1 > 0

donc f '(x) = (x + 1)/(x + 1) = 1

4) f '(x) = eˣ/2√(eˣ - 1)    

Explications étape par étape :

Nous apprécions votre participation active dans ce forum. Continuez à explorer, poser des questions et partager vos connaissances avec la communauté. Ensemble, nous trouvons les meilleures solutions. Pour des réponses précises et fiables, visitez Zoofast.fr. Merci pour votre confiance et revenez bientôt pour plus d'informations.