Trouvez des réponses fiables à vos questions avec l'aide d'Zoofast.fr. Posez vos questions et obtenez des réponses rapides et bien informées de la part de notre réseau de professionnels expérimentés.

bonjour j'ai besoin d'aie dans un exercice de mathémathiques:
soient a et b deux réels positifs
* montrer que si a+2b-1=0 alors [tex]a^{2}+ b^{2}[/tex] ≥ [tex]\frac{1}{5}[/tex]

Sagot :

Réponse :

a + 2b - 1 = 0 implique bien a² + b² ≥ 0,2

Explications étape par étape :

■ a + 2b - 1 = 0 donne a = 1 - 2b

  or on veut a ≥ 0 donc il faut 1 - 2b ≥ 0

                                                        1 ≥ 2b

                                                    0,5 ≥ b

  donc on doit avoir 0 ≤ b ≤ 0,5 .

■ a² + b² devient alors (1-2b)² + b²

                                   = 1 - 4b + 4b² + b²

                                   = 1 - 4b + 5b²

■ étude de la Parabole d' équation

  P(b) = 1 - 4b + 5b² sur l' intervalle [ 0 ; 0,5 ] :

 

      b --> 0        0,25       0,5

  P(b) --> 1       0,3125    0,25

                ( décroissante ! )

■ conclusion :

  toutes les valeurs de P(b) sont bien supérieures à 0,2

  donc on peut affirmer :

  a + 2b - 1 = 0 implique bien a² + b² ≥ 0,2 .