Zoofast.fr propose un mélange unique de réponses expertes et de connaissances communautaires. Posez vos questions et recevez des réponses détaillées et fiables de la part de nos membres de la communauté expérimentés et bien informés.

(Exercice maths complémentaire Terminale) Bonjour pouvez-vous m’aider svp, je galère un peu. ( pour l’exercice 13 et 14)

Exercice Maths Complémentaire Terminale Bonjour Pouvezvous Maider Svp Je Galère Un Peu Pour Lexercice 13 Et 14 class=

Sagot :

Bonjour :))

  • Exercice 13

[tex]U_n=-2n^{3}+2n^{2}-4n+1\\\\U_n=n^{3}(-2+\frac{2}{n} -\frac{4}{n^{2}} +\frac{1}{n^{3}}) \\\\ \lim_{n \to +\infty} \frac{2}{n} =0\ \ \ \lim_{n \to +\infty} \frac{4}{n^{2}} =0\ \ \ \lim_{n \to +\infty} \frac{1}{n^{3}}=0\\\\ \lim_{n \to +\infty} (-2+\frac{2}{n} -\frac{4}{n^{2}} +\frac{1}{n^{3}})=-2\\\\ \lim_{n \to +\infty} U_n=-\infty[/tex]

[tex]V_n=3n^{2}-2n+1\\\\V_n=n^{2}(3-\frac{2}{n}+\frac{1}{n^{2}})\\\\ \lim_{n \to +\infty} V_n=+\infty[/tex]

[tex]W_n=n-\sqrt{n}\\\\W_n=n(1-\frac{\sqrt{n}}{n})\\\\W_n=n(1-\frac{\sqrt{n}\sqrt{n}}{n\sqrt{n}})\\\\W_n=n(1-\frac{n}{n\sqrt{n}})\\\\W_n=n(1-\frac{1}{\sqrt{n}})\\\\ \lim_{n \to +\infty} W_n=+\infty[/tex]

  • Exercice 14

[tex]U_n=-n^{2}+n-1\\\\U_n=n^{2}(-1+\frac{1}{n}-\frac{1}{n^{2}})\\\\ \lim_{n \to +\infty} U_n=-\infty[/tex]

[tex]V_n=-3n^{3}+n^{2}-n-4\\\\V_n=n^{3}(-3+\frac{1}{n}-\frac{1}{n^{2}}-\frac{4}{n^{3}})\\\\ \lim_{n \to +\infty} V_n=-\infty[/tex]

[tex]W_n=\frac{3}{2}n^{3}-n\\\\W_n=n^{3}(\frac{3}{2}-\frac{1}{n^{2}})\\\\ \lim_{n \to +\infty} W_n=+\infty[/tex]

Remarque :

  • Pour déterminer la limite d'une suite de type polynôme de degré p, on factorise avec le terme de plus haut degré donc p

  • Pour déterminer la limite d'une suite en présence d'une racine carrée, on utilise le conjugué du terme

Bonne continuation :))