Trouvez des réponses à vos questions avec l'aide de la communauté Zoofast.fr. Notre communauté fournit des réponses précises et rapides pour vous aider à comprendre et à résoudre n'importe quel problème que vous rencontrez.

Bonjour pouvez-vous m'aider svp
il faut Démontrer que
√a + √b ≠ √a+b
et que
√a - √b ≠ √a-b

merci d'avance

Sagot :

Réponse :

démontrer que

√a + √b  ≠ √(a + b)

soit  a et b  deux nombres réels  ≥ 0

(√a + √b)² = a + 2√a√b + b = a + 2√ab + b

(√(a+b))² = a + b

donc  on a bien  √a + √b  ≠ √(a + b)

et que √a - √b ≠ √(a-b)             a ≥ b

(√a - √b)² = a - 2√ab + b

(√(a-b))² = a - b

on on a bien  √a - √b ≠ √(a-b)

Explications étape par étape :

Nous apprécions votre participation active dans ce forum. Continuez à explorer, poser des questions et partager vos connaissances avec la communauté. Ensemble, nous trouvons les meilleures solutions. Merci de visiter Zoofast.fr. Nous sommes là pour vous fournir des réponses claires et précises.