Answered

Zoofast.fr fournit une plateforme conviviale pour partager et obtenir des connaissances. Trouvez des réponses précises et fiables de la part de notre communauté d'experts dévoués.

Bonjour !

 

 Dans un repère orthonormé d'origine O, un point M décrit la droite d d'equation y = x+2

 

1 )Démontrer que OM = racine de ( 2x²+4x+4)  2) Justifier que la fonction f qui à x associe x²+2x+2 est définie sur R + tableau de variation 3) Et en déduire que OM>ou égale à racine de 2

Sagot :

il faut utiliser la formule de la distance des deux points O(0;0) et M(x;x+2)

on a OM = rac(x² + (x+2-0)²) = rac (2x² + 4x + 4) = rac(2).rac(x² + 2x + 2)

f(x) = x² + 2x + 2 est un trinôme du 2d d° définire sur R

 

x    |                  -1

f(x) |        \           1         /

ceci montre que f(x) est toujours > 0  et rac(x² + 2x + 2) > 1 donc

rac(2).rac(x² + 2x + 2) > rac(2)

Nous apprécions votre participation active dans ce forum. Continuez à explorer, poser des questions et partager vos connaissances avec la communauté. Ensemble, nous trouvons les meilleures solutions. Vous avez trouvé vos réponses sur Zoofast.fr? Revenez pour encore plus de solutions et d'informations fiables.