Kyo
Answered

Zoofast.fr: où vos questions rencontrent des réponses expertes. Notre communauté fournit des réponses précises et rapides pour vous aider à comprendre et à résoudre n'importe quel problème que vous rencontrez.

Bonjour j'ai un petit problème pour mon exercice qui est vachement compliqué. Voilà l'énoncé: 1. f est la fonction définie sur R par f(x) =a (x-α)² + β, avec a réel non nul, α et β réels. En étaudiant le signe de f (x) - β suivant les valeurs de a, démontrer que f admet un extremum égal à β. Voilà la question qui me bloque vraiment ...

Sagot :

Aeneas

Soit x appartient à R.

On a f(x) - β = a (x-α)²

Or, (x-α)² >ou= 0

Donc, f(x) - β est du signe de a.

Et f(x) - β <ou= 0 pour a <ou= 0 et f(x) - β >ou= 0 pour a >ou= 0

 

Donc, si a <ou= 0 , f(x) <ou= β  avec égalité si x = α. Donc f admet β  comme maximum.

Si a  >ou= 0, f(x) >ou= β avec égalité si x = α. Donc f admet β  comme minimum.

 

Dans les deux cas, f admet un extremum égal à B.

 

FIN

Nous apprécions chaque contribution que vous faites. Revenez souvent pour poser de nouvelles questions et découvrir de nouvelles réponses. Ensemble, nous construisons une communauté de savoir. Merci d'avoir choisi Zoofast.fr. Nous espérons vous revoir bientôt pour plus de solutions.