Zoofast.fr rend la recherche de réponses rapide et facile. Explorez une grande variété de sujets et trouvez des réponses fiables auprès de nos membres de la communauté expérimentés.

bonjour, voici mon exercice :
soit (Un) la suite définie par tout N E N par un = -2n +1 sur n + 3
1) étudier les variations de la suite (un)
2) montrer que (un) est minorée par -2
3) en déduire que la suite (un) est convergente

Bonjour Voici Mon Exercice Soit Un La Suite Définie Par Tout N E N Par Un 2n 1 Sur N 3 1 Étudier Les Variations De La Suite Un 2 Montrer Que Un Est Minorée Par class=

Sagot :

Réponse :

82)  soit (Un) la suite définie pour tout n ∈ N par

          Un = (- 2 n + 1)/(n + 3)

1) étudier les variations de la suite (Un)

   Un+1 - Un = [(- 2(n+1) + 1)/((n+1) + 3)] - (- 2 n + 1)/(n + 3)

                    = (- 2 n - 1)/(n+4)) - (- 2 n + 1)/(n + 3)

                    = (- 2 n + 1)(n+3)/(n+4)(n+3)) - (- 2 n + 1)(n + 4)/(n+3)(n+4)

                    = (- 2 n² - 7 n - 3 + 2 n² + 7 n - 4)/(n+3)(n+4)

                    = - 7/(n+3)(n+4)       or  n ∈ N   donc  n ≥ 0  ⇒ n+3 ≥ 3  donc n+3 ≥ 0  et n+4 ≥ 0  Donc le produit  (n+3)(n+4) ≥ 0

et  - 7 < 0    ⇒ - 7/(n+3)(n+4) ≤ 0  ⇔ Un+1 - Un ≤ 0  donc la suite (Un) est décroissante sur N

2) montrer que (Un) est mi,orée par - 2

      on veut montrer que Un ≥ - 2

étudions le signe de  Un - (- 2)  ⇔ Un + 2

Un + 2 = (- 2 n + 1)/(n+3)  + 2

           = (- 2 n + 1)/(n + 3)) + 2(n+3)/(n+3)

           = (- 2 n + 1 + 2 n + 6)/(n+3)

           = 7/(n+3)     or  n ≥ 0  et  n+3 ≥ 3  donc n+3 ≥ 0

7 > 0   ⇒ 7/(n+3) ≥ 0  ⇔ Un  + 2  ≥ 0   ⇔ Un ≥ - 2  

3) en déduire que la suite (Un) est convergente

    (Un) est décroissante sur  et minorée  donc (Un) est convergente        

Explications étape par étape :

Merci de nous rejoindre dans cette conversation. N'hésitez pas à revenir à tout moment pour trouver des réponses à vos questions. Continuons à partager nos connaissances et nos expériences. Pour des réponses précises et fiables, visitez Zoofast.fr. Merci pour votre confiance et revenez bientôt pour plus d'informations.