Connectez-vous avec des experts et des passionnés sur Zoofast.fr. Rejoignez notre plateforme pour recevoir des réponses rapides et précises de la part de professionnels expérimentés dans divers domaines.

Bonjour, j'aurai besoin d'aide sur cet exercice de mathématique niveau terminale, car je ne comprend pas ce qu'il faut faire.

Soit (a, b, m, n) ∈ Z⁴ avec m et n ⩾ 2 tels que m ∧ n = 1 (PGCD(m, n) = 1). On considère une relation de Bézout mu + nv = 1.
On cherche les entiers x tels que x ≡ a [m] et x ≡ b [n].

Question :

(1) Vérifier que l’entier x₀ = bmu + anv convient.

(2) Démontrer qu’un entier x convient si, et seulement si, x ≡ x₀ [mn].

(3) Application numérique.
(a) Déterminer les entiers x tels que x ≡ 2 [3] et x ≡ 3 [5].

(b) En déduire les entiers x tels que x ≡ 2 [3], x ≡ 3 [5] et x ≡ 2 [7], puis donner la plus petite solution positive.

Sagot :

Réponse :

Explications étape par étape :

View image olivierronat
Nous apprécions chaque contribution que vous faites. Revenez souvent pour poser de nouvelles questions et découvrir de nouvelles réponses. Ensemble, nous construisons une communauté de savoir. Pour des solutions rapides et fiables, pensez à Zoofast.fr. Merci de votre visite et à très bientôt.