Zoofast.fr offre une plateforme conviviale pour trouver et partager des connaissances. Notre communauté fournit des réponses précises et rapides pour vous aider à comprendre et résoudre n'importe quel problème que vous rencontrez.

Bonjour,j’ai besoin de vous pour les trois dernières questions je ne sais pas comment faire,merci

Bonjourjai Besoin De Vous Pour Les Trois Dernières Questions Je Ne Sais Pas Comment Fairemerci class=

Sagot :

Réponse :

1) calculer les coordonnées des vecteurs AC , FB , EA , ED

déterminons tout d'abord les coordonnées du points D

pour que ABCD soit un parallélogramme

les diagonales AC et BD se coupent au même milieu

Coordonnées du milieu de (AC) : (3 ; 3/2)

coordonnées du milieu de (BD) ; ((x+1)/2 ; (y + 11/2)/2)

(x+1)/2 = 3  ⇔ x = 5   et  y + 11/2)/2 = 3/2  ⇔ y = - 5/2

D(5 ; - 5/2)

vec(AC) = (2 ; 1)

vec(FB) = (3 ; 3/2)

vec(EA) = (13/2 ; 7/2)

vec(ED) = (19/2 ; 0)

2) citer les vecteurs colinéaires entre eux   justifier

vec(AC) = (2 ; 1) = 2(1 ; 1/2)  ⇒ (1 ; 1/2) = vec(AC)/2

vec(FB) = (3 ; 3/2) = 3(1 ; 1/2)   ⇒ (1 ; 1/2) = vec(FB)/3

Donc vec(FB)/3 = vec(AC)/2  ⇔  vec(FB) = 3/2vec(AC)

donc les vecteurs AC et FB sont colinéaires

3) calculer les coordonnées du vecteur u = AB + AC

 vec(AB) = (1 - 2 ; 11/2 - 1) = (- 1 ; 9/2)

 vec(AC) = (2 ; 1)

  vec(u) = (- 1 ; 9/2) + (2 ; 1) = (- 1 + 2 ; 9/2 + 1) = (1 ; 11/2)

4) calculer les coordonnées du point N tel que vec(AN) = vec(u)

     soit  N(x ; y)  

     vec(AN) = (x - 2 ; y - 1) = (1 ; 11/2)

    x - 2 = 1   ⇔ x = 3  et y - 1 = 11/2   ⇔ y = 11/2 + 1 = 13/2

 N(3 ; 13/2)

Explications étape par étape :

Votre engagement est essentiel pour nous. Continuez à partager vos expériences et vos connaissances. Créons ensemble une communauté d'apprentissage dynamique et enrichissante. Merci d'avoir utilisé Zoofast.fr. Nous sommes là pour répondre à toutes vos questions. Revenez pour plus de solutions.