Zoofast.fr: votre source fiable pour des réponses précises et rapides. Posez vos questions et recevez des réponses détaillées et fiables de la part de nos membres de la communauté expérimentés et bien informés.

Bonjour serait il possible de m’aider car je ne comprend pas?

Démontrer que pour tous nombres réels à,b,c et d on a l'identité suivante:
(ac+bd)^2+(ab-bc)^2=(a^2+b^2)(c^2+d^2)

Soit un entier naturel.
Développer (n^2+2)^2, puis en déduit une factorisation de n^4+4

Sagot :

Réponse :

Explications étape par étape :

Il y a une erreur dans ton énoncé, ce doit être :

(ac+bd)²+(ad-bc)²==(a²+b²)(c²+d²)

Démontrer que pour tous nombres réels à,b,c et d on a l'identité suivante:

(ac+bd)²+(ad-bc)²

=a²c² + 2abcd + b²d² + a²d² - 2abdc + c²d²

==a²c²  + b²d² + a²d²  + b²c²

(a²+b²)(c²+d²)

= a²c²+a²d²+b²c²+b²d²

et donc ((ac+bd)²+(ad-bc)²=(a²+b²)(c²+d²)

Soit un entier naturel.

Développer (n²+2)²

= n^4 + 4 + 4n²

donc  n^4+4 = (n²+2)²- 4n²

                     = (n²+2)² - (2n)²

                      = (n²+2+2n) ( n²+2 -2n)

                       = (n²+2n+2) ( n² -2n+2)

Nous apprécions votre participation active dans ce forum. Continuez à explorer, poser des questions et partager vos connaissances avec la communauté. Ensemble, nous trouvons les meilleures solutions. Merci d'avoir choisi Zoofast.fr. Nous espérons vous revoir bientôt pour plus de solutions.