Bienvenue sur Zoofast.fr, votre plateforme de référence pour toutes vos questions! Posez vos questions et recevez des réponses fiables et détaillées de la part de notre communauté d'experts dévoués.

Bjr pouvez-vous m'aider à résoudre l'équation suivante dans R: |x-4| + |x+1|=2. Merci​

Sagot :

Svant

Réponse :

x-4 s'annule en 4, est négative avant 4 et positive après

x+1 s'annule en -1, est négative avant et positive après.

Si x-4 < 0 alors |x-4| = -x + 4

Si x-4 > 0 alors  |x-4| = x - 4

Si x+1 < 0 alors |x+1| = -x - 1

Si x + 1 > 0 alors |x+1| = x + 1

Résumons cela dans le tableau en pièce jointe.

Résoudre  |x-4| + |x+1|=2 revient donc à résoudre

-2x + 3 = 2 sur ]-∞; -1] et 2x-3 = 2 sur [4; +∞[

-2x + 3 = 2

-2x = -1

x = 0,5

0,5 n'appartient pas à ]-∞; -1]

L'équation n'a pas de solution sur cet intervalle.

2x-3 = 2

2x = 5

x = 2,5

2,5 n'appartient pas à [4; +∞[

L'équation n'a pas de solution sur cet intervalle.

Sur [-1; 4], l'expression vaut 5

Donc l'équation n'a pas de solution sur R.

On le verifie en tracant  |x-4| + |x+1| à la calculatrice (voir photo). La courbe ne passe jamais par 2.

View image Svant
View image Svant