Bienvenue sur Zoofast.fr, votre plateforme de référence pour toutes vos questions! Explorez des milliers de réponses vérifiées par des experts et trouvez les solutions dont vous avez besoin, quel que soit le sujet.

Bonjour, j'aurai besoin d'aide pour cet exercice. Je vous en remercie d'avance !

Bonjour Jaurai Besoin Daide Pour Cet Exercice Je Vous En Remercie Davance class=

Sagot :

Salut Corentin ;)

On considère les points A(1; 3), B(-3; 2) et C(6; -4).

RAPPEL : produit scalaire

Dans le cadre d'une géométrie analytique (avec repère orthonormé), le produit scalaire de vec(u)(x; y) par vec(v)(x'; y') est :

[tex]\vec{u}.\vec{v}=xx'+yy'[/tex]

Dans le cadre d'une géométrie vectorielle dans laquelle nous avons besoin d'utiliser l'angle entre les deux vecteurs, nous retenons la formule suivante :

[tex]\vec{u}.\vec{v}=||\vec{u}||*||\vec{v}||*cos(\vec{u}, \vec{v})[/tex]

[tex]Avec\ ||\vec{u}||=\sqrt{x^{2}+y^{2}} \ \ \ ||\vec{v}||=\sqrt{x'^{2}+y'^{2}}[/tex]

1. Calculer [tex]\overrightarrow{AB}.\overrightarrow{AC} \ et\ \overrightarrow{BC}.\overrightarrow{BA}[/tex]

[tex]\overrightarrow{AB} = (-3-1; 2-3) = (-4; -1)\\\overrightarrow{AC} = (6-1; -4-3) = (5; -7)\\\\\overrightarrow{AB}.\overrightarrow{AC}=(-4*5)+(-1)*(-7)=-20+7=\boxed{-13}[/tex]

[tex]\overrightarrow{BC} = (6-(-3); -4-2) = (9; -6)\\\overrightarrow{BA} = -\overrightarrow{AB} = (4; 1)\\\\\overrightarrow{BC}.\overrightarrow{BA}=9*4+(-6)*1 = 36-6 = \boxed{30}[/tex]

2. En déduire une valeur approchée, au degré près, des mesures des angles du triangle ABC

[tex]On\ sait\ que : \vec{u}.\vec{v} = ||\vec{u}||*||\vec{v}||* cos(\vec{u}, \vec{v})\\\\Ce\ qui\ permet\ de\ dire : \widehat{(\vec{u}, \vec{v})} = cos^{-1}(\frac{\vec{u}.\vec{v}}{||\vec{u}||*||\vec{v}||})[/tex]

[tex]||\overrightarrow{AB}|| = \sqrt{(-4)^{2}+(-1)^{2}} = \sqrt{17}\\||\overrightarrow{AC}|| = \sqrt{(5)^{2}+(-7)^{2}} = \sqrt{74}\\||\overrightarrow{BA}|| = ||\overrightarrow{AB}|| = \sqrt{17}\\||\overrightarrow{BC}|| = \sqrt{(9)^{2}+(-6)^{2}} = \sqrt{117} = 3\sqrt{13}[/tex]

[tex]\widehat{BAC} = cos^{-1} (\frac{\overrightarrow{AB}.\overrightarrow{AC}}{||\overrightarrow{AB}||*||\overrightarrow{AC}||}) = cos^{-1}(\frac{-13}{\sqrt{17}*\sqrt{74}}) \approx 112\ degr\'es.[/tex]

[tex]\widehat{ABC} = cos^{-1} (\frac{\overrightarrow{BC}.\overrightarrow{BA}}{||\overrightarrow{BC}||*||\overrightarrow{BA}||}) = cos^{-1}(\frac{30}{\sqrt{17}*3\sqrt{13}}) \approx 48\ degr\'es.[/tex]

On sait que la somme des angles dans un triangle est égale à 180°. On connait deux angles, ce qui permet de déduire le dernier :

[tex]\widehat{ACB} = 180 - 112 - 48 = 20\ degr\'es.[/tex]

Espérant t'avoir apporté l'aide que tu souhaitais, je te souhaite une bonne soirée ;)

Nous apprécions chaque contribution que vous faites. Revenez souvent pour poser de nouvelles questions et découvrir de nouvelles réponses. Ensemble, nous construisons une communauté de savoir. Zoofast.fr est votre partenaire de confiance pour toutes vos questions. Revenez souvent pour des réponses actualisées.