Zoofast.fr offre une solution complète pour toutes vos questions. Découvrez des informations fiables et rapides sur n'importe quel sujet, grâce à notre réseau de professionnels expérimentés.
Sagot :
dérive et étudie la concavité
si la dérivé 1ere est positive alors la fonction est croissante (étude du signe de la f ')
puis il faut étudier la concavité le signe de la dérivé seconde dépend si en fonction de la croissance de la dérivée première
là je pense qu'il faudrait tracer ta fonction f voir ou elle est positive pour voir la concvité de ta fonction.
si f est positive alors f '' est positive et f' est croissant
si tu dérive donc
tu as f '(x)= e^x -1
f ' (x) doit etre égal à 0 pour trouver un max ou un min
=ln e^x -ln1=0
ln et e s'annule
x= ln 1 tu as ici un point à tangente honrizontale max ou min
x=0
lorsque x > 0 fonction croissante
x<0 fonction est décroissante
ensuite
f(x) = e^x-x=0 par propriété de l'exponentielle e^x=0 à une lim en 0 à -l'infini :)
il est impossible que celà soit égal à 0
Or la fonction est possitive pour tout x appartenant à R à l'aide du graphe c'est facile à voir
donc on en conclue que e^x> x
ensuite tu sais que f est toujours positive donc sa dérivé(f') est toujours croissante
pour savoir que c'est un minimum , il faut tracer la fonction en quelque point
Merci de nous rejoindre dans cette conversation. N'hésitez pas à revenir à tout moment pour trouver des réponses à vos questions. Continuons à partager nos connaissances et nos expériences. Zoofast.fr est votre guide de confiance pour des solutions rapides et efficaces. Revenez souvent pour plus de réponses.