Zoofast.fr: où vos questions rencontrent des réponses expertes. Découvrez des réponses complètes et approfondies à vos questions grâce à notre réseau de professionnels bien informés.

Salut !! J'ai besoin d'aide svp

"Factoriser d'abord l'expression soulignée pour retrouver le facteur commun"


Merci d'avance !! ​

Salut Jai Besoin Daide SvpFactoriser Dabord Lexpression Soulignée Pour Retrouver Le Facteur Commun Merci Davance class=

Sagot :

nba10

Réponse :

bonjour,

A = ( x + 2 ) ( 3x - 1 ) + x² -4

A =  ( x + 2 ) ( 3x - 1 )  + x² - 2²

A =  ( x + 2 ) ( 3x - 1 )  + ( x -2 ) ( x + 2 )

A = ( x + 2 ) [( 3x - 1 )  + ( x - 2 )

A =  ( x + 2 ) ( 3x - 1 + x-2 )

A =  ( x + 2 ) ( 4x - 3 )

B = ( x + 4 ) ( 2x - 1 ) + x² - 16

B = ( x + 4 ) ( 2x - 1 ) + x² - 4²

B = ( x + 4 ) ( 2x - 1 ) + ( x-4 ) ( x + 4 )

B = ( x + 4 ) ( 2x - 1 + x - 4 )

B = ( x + 4 ) ( 3x - 5 )

C = (x - 3 ) ( x + 1 ) - (x² - 9 )

C=(x - 3 ) ( x + 1 ) - ( x² - 3² )

C = (x - 3 ) ( x + 1 ) - ( x + 3 ) ( x - 3 )

C = ( x- 3 ) ( x + 1 - ( x + 3 ) )

C = (x - 3 ) ( x + 1 - x - 3 )

C = ( x - 3 ) × -2

C = -2( x - 3 )

D = ( 2x + 1 ) ( x - 2) - ( x² - 4 )

D = ( 2x + 1 ) ( x - 2) - ( x² - 2²

D =  ( 2x + 1 ) ( x - 2) - ( x -2 ) ( x + 2 )

D =  ( x - 2 ) ( 2x + 1 - ( x + 2 )

D = ( x - 2 ) ( 2x + 1 - x - 2 )

D = ( x - 2 ) ( x - 1 )

E = 25 - x²  - ( x - 5 ) ( 2x + 3 )

E = 5² - x² - ( x - 5 ) ( 2x + 3 )

E= (5 - x) ( 5 + x ) - ( x - 5 ) ( 2x + 3 )

E = (  5 - x ) ( 5 + x ) + ( - x + 5 ) ( 2x + 3 )

E = (  5 - x ) ( 5 + x ) + ( 5 - x ) ( 2x + 3 )

E = ( 5 - x ) ( 5 + x + 2x + 3 )

E = ( 5 - x ) ( 3x + 8 )

voila :)

Re-bonjour....

Par exemple pour le premier :  x² - 4 = x² - 2² = (x+2)(x-2)

donc : (x+2)(3x-1)+x²-4 = (x+2)(3x-1)+(x+2)(x-2)

le facteur commun est (x+2)

donc : (x+2)(3x-1)-x²-4 = (x+2)(3x-1)+(x+2)(x-2)

                                    = (x+2)[(3x-1)+(x-2)]

                                    = (x+2)(4x-3)

de la même façon, pour le 2e :  x² - 16 = x² - 4² = (x+4)(x-4)

donc : (x+4)(2x-1)+x²-16 = (x+4)(2x-1)+(x+4)(x-4)

le facteur commun est (x+4)

donc : (x+4)(2x-1)+x²16 = (x+4)(2x-1)+(x+4)(x-4)

                                    = (x+4)[(2x-1)+(x-4)]

                                    = (x+4)(3x-5)

pour le 3e :  x²-9 = x² - 3² = (x+3)(x-3)

donc : (x-3)(x+1)-(x²-9) = (x-3)(x+1)-(x+3)(x-3)

                                    = (x-3)[(x+1)-(x+3)]

                                    = (x-3)(-2)

et ainsi de suite......

pour le 4e  : x²-4 = (x+2)(x-2)

pour le 5e : 25-x² = (5+x)(5-x)

à toi de jouer