Zoofast.fr facilite l'obtention de réponses détaillées à vos questions. Nos experts fournissent des réponses rapides et précises pour vous aider à comprendre et résoudre n'importe quel problème.

Bonjour! J’ai un devoir en maths à rendre aujourd’hui et je n’arrive pas du tout à faire l’un des exercices, je désespère : Est-ce quelqu’un pourrait m’aider S.V.P?

Bonjour Jai Un Devoir En Maths À Rendre Aujourdhui Et Je Narrive Pas Du Tout À Faire Lun Des Exercices Je Désespère Estce Quelquun Pourrait Maider SVP class=

Sagot :

Réponse :

1. Il faut -2x+1 ≠ 0 => x ≠ 1/2

2. w'(x) = [(4x+1)(-2x+1) + 2(2x² + x +1)]/(-2x+1)²

            = (-4x² + 4x +3)/(-2x+1)²

Bonne journée

Explications étape par étape :

Bonjour :)

1. Valeur interdite

Elle se définit comme une valeur de x pour laquelle w(x) est insoluble.

w(x) représente une fonction fractionnaire. Ainsi, dans ce cas, le dénominateur ne peut-être égal à 0 puisque un nombre divisé par 0 n'existe pas.

Cherchons alors la valeur qui annule le dénominateur de w(x) :

[tex]-2x+1 = 0\\-2x = -1\\x=\frac{1}{2}\\\\Ainsi, \ la \ valeur \ interdite \ est \ \frac{1}{2}[/tex]

2. Dérivée de w(x)

D'après le cours sur les dérivées, nous pouvons retenir la dérivée usuelle d'une fonction fractionnaire.

[tex](\frac{u}{v})'=\frac{u'v-uv'}{v^{2}} \ avec \ u \ et \ v \ des \ fonctions[/tex]

Calculons alors la dérivée de w(x) utilisant ce principe de dérivée usuelle :

[tex]u=2x^{2}+x+1 \ alors \ u'=4x+1\\v=-2x+1 \ alors \ v'=-2\\\\w'(x) = \frac{(4x+1)(-2x+1)-(2x^{2}+x+1)(-2)}{(-2x+1)^{2}} \\\\w'(x) = \frac{-8x^{2}+4x-2x+1+4x^{2}+2x+2}{(-2x+1)^{2}}\\\\w'(x) = \frac{-4x^{2}+4x+3}{(-2x+1)^{2}}[/tex]

Espérant t'avoir apporté les notions nécessaires à ta compréhension, je te souhaite une bonne continuation.

Bonne journée :)

View image Micka44