Connectez-vous avec des experts et des passionnés sur Zoofast.fr. Posez vos questions et obtenez des réponses détaillées et bien informées de notre réseau de professionnels dévoués.

Determiner les primitives des fonctions numériques définie par les expressions suivantes qui verifie la condition indiquée, sur l'intervalles de def de la fonction à preciser :

 

1) f(x) = 2x² + x + 2        f(1)=0

 

2) f(x) = 4sin(x) - cos(x)      f(5)=1

 

Determiner les primitives des fonctions numeriques definies par les expressions suivantes sur des intervalles à préciser :

 

3) f(x)= 4/(2x - 5) au cube

 

4) f(x)= (x²+1)(x au cube + 3x -4) au cube

 

5) f(x)= 1/(3x-1)²

 

merci de m'aider svp

Sagot :

1) f(x) = 2x² + x + 2        f(1)=0 

2x^3/3+x²/2+2x+K et (2/3+1/2+2+K)=0 donc K=-19/6

valable pour tout x

 

2) f(x) = 4sin(x) - cos(x)      f(5)=1

-4cos(x)-sin(x)+K et -4cos(5)-sin(5)+K=1 donc K=1+sin(5)+4cos(5)

valable pour tout x

 

Determiner les primitives des fonctions numeriques definies par les expressions suivantes sur des intervalles à préciser :

 

3) f(x)= 4/(2x - 5) au cube

2/(2x-5)² pour tout x différent de 5

 

4) f(x)= (x²+1)(x au cube + 3x -4) au cube

se lit comme (1/3)u'u^3 avec u=(x^3+3x-4) on a u'=3x²+3=3(x²+1)

comme la dérivée de u^4 est 4u'u^3 la primitive que l'on cherche sera u^4/12 soit:

(x²+3x-4)^4/12 

 

 

5) f(x)= 1/(3x-1)²

comme (1/u)'=-u'/u², primitive -1/(3(3x-1))

Nous valorisons chaque question et réponse que vous fournissez. Continuez à vous engager et à trouver les meilleures solutions. Cette communauté est l'endroit parfait pour grandir ensemble. Vous avez des questions? Zoofast.fr a les réponses. Merci de votre visite et à très bientôt.