Rejoignez Zoofast.fr et commencez à obtenir les réponses dont vous avez besoin. Obtenez des réponses détaillées et précises de la part de notre communauté de professionnels bien informés.

Bonjour, j'aurais besoin d'aide sur mon exercice de maths ( en 2nd)

soit abc un triangle quelconque dans un repère non orthogonal.
1) déterminer graphiquement les coordonnés de A,B et de C
2) calculer les coordonnés de AB et AC
3) on souhaite construire le point N tel que 2Ab +BN+CN=AC . Montrer que le point N a pour coordonnées (2;0)
4) démontrer que les droites (AB) et (CN) sont parallèles

Bonjour Jaurais Besoin Daide Sur Mon Exercice De Maths En 2nd Soit Abc Un Triangle Quelconque Dans Un Repère Non Orthogonal 1 Déterminer Graphiquement Les Coord class=

Sagot :

Aha c’est mon dm de maths je t’envoie ce que j’ai fait

Réponse :

1) déterminer graphiquement les coordonnées de A , B  et C

       A(1 ; 2)  ,   B(3 ; 4)   , C(3 ; 1)

2) calculer les coordonnées des vecteurs AB et AC

    vec(AB) = (3 - 1 ; 4 - 2) = (2 ; 2)

    vec(AC) = (3 - 1 ; 1 - 2) = (2 ; - 1)

3) Montrer que le point N a pour coordonnées (2 ; 0)

    2vec(AB) + vec(BN) + vec(CN) = vec(AC)

soit  N(x ; y)

2vec(AB) = (4 ; 4)

vec(BN) = (x - 3 ; y - 4)

vec(CN) = (x - 3 ; y - 1)

.......................................................

2vec(AB) + vec(BN) + vec(CN) = vec(AC)

(4 ; 4) + (x - 3 ; y - 4) + (x - 3 ; y - 1) = (2 ; - 1)

(2 x - 2 ; 2 y - 1) = (2 ; - 1)

2 x - 2 = 2  ⇔ 2 x = 4  ⇔ x = 2

2 y - 1 = - 1  ⇔ 2 y = 0 ⇔ y = 0

Donc on a bien  N(2 ; 0)

4) démontrer que les droites (AB) et (CN) sont parallèles

il suffit de montrer que les vecteurs AB et CN sont colinéaires

c'est à dire  x'y - y'x = 0

vec(AB) = (2 ; 2)

vec(CN) = (2 - 3 ; 0 - 1) = (- 1 ; - 1)

x'y - y'x = 0  ⇔ 2*(-1) - 2*(-1) = - 2 + 2 = 0  ⇒ les vecteurs AB et CN sont colinéaires  donc on déduit que les droites (AB) et (CN) sont parallèles

                                                   

Explications étape par étape