Answered

Zoofast.fr rend la recherche de réponses rapide et facile. Que votre question soit simple ou complexe, notre communauté est là pour fournir des réponses détaillées et fiables rapidement et efficacement.

Bonjour vous pouvez m'aide svp
NP est un triangle tel que MN = 58 cm MP = 40 cm NP = 42 cm.

a) MNP est-il un triangle rectangle ? Justifier.

b) S est un point quelconque de [PM]. On note par x la longueur MS, en cm. x = MS .

Entre quelles valeurs varie x ?

c) La parallèle à (PN) passant par S coupe [MN] en T. Exprimer les longueurs TS et MT en

fonction de x .

d) Quelle doit être la valeur de x pour avoir MT = 31,9 cm ?

e) Quelle est la nature du triangle MTS ? Justifier.

f) On note par f la fonction de variable x telle que : f x)( soit égale au périmètre du triangle

MTS.

Définir algébriquement la fonction f .

g) Pour quelle valeur de x ce périmètre vaut-il le cinquième du périmètre du triangle MPN ?

h) On note par g la fonction de variable x telle que )( g x soit égale à l’aire du triangle MTS.

Définir algébriquement la fonction g .

i) Pour quelle valeur de x l’aire du triangle MTS vaut-elle 67,2 cm² ?

j) Pour quelle valeur de x l’aire du triangle MTS vaut-elle le tiers de celle du triangle MPN ?

(Valeur au mm près.)

Sagot :

Réponse :

j) x ≈ 17,4 cm ( soit 174 mm )

Explications étape par étape :

■ a) Pythagore :

      58² = 40² + 42² --> triangle rectangle !

■ b) x varie entre zéro et 40 cm .

■ c) Thalès dit :

       MT/MN = MS/MP = TS/NP

       MT/58 = x/(40-x) = TS/42

       --> MT = 58x/(40-x) et

             TS = 42x/(40-x) .

■ d) on doit résoudre :

         58x = 31,9(40-x)

       26,1x = 1276

              x = 440/9 ≈ 48,9 cm .

■ e) MTS est aussi un triangle rectangle

                                puisque (TS) // (NP) .

■ f) f(x) = x + 42x/(40-x) + 58x/(40-x)

           = (40x-x² + 42x + 58x)/(40-x)

           = (140x-x²)/(40-x) .

■ g) on doit résoudre :

             (140x-x²)/(40-x) = 140/5

                    700x - 5x² = 5600 - 140x  

       5x² - 840x + 5600 = 0

           x² - 168x + 1120 = 0

                                  x ≈ 6,95456 cm .

        vérif avec x = 7 cm :

        f(7) ≈ 28,2 cm ; et 140/5 = 28 cm .

■ h) g(x) = 0,5*42x²/(40-x) = 21x²/(40-x) .

■ i) on doit résoudre :

             21x²/(40-x) = 67,2

                       21x² = 2688 - 67,2x

       x² + 3,2x - 128 = 0

                            x ≈ 9,83 cm .

       vérif avec x = 10 :

       g(10) = 70 cm² .

■ j) on doit résoudre :

                   21x²/(40-x) = 840/3

                             63x² = 33600 - 840x

  63x² + 840x - 33600 = 0

       9x² + 120x - 4800 = 0

         3x² + 40x - 1600 = 0

                                  x ≈ 17,37 cm .

     vérif avec x = 17,4 cm :

     g(17,4) = 21*17,4²/(40-17,4) = 281,3 cm² ;

                                   et 840/3 = 280 cm² .

Nous apprécions votre participation active dans ce forum. Continuez à explorer, poser des questions et partager vos connaissances avec la communauté. Ensemble, nous trouvons les meilleures solutions. Vous avez des questions? Zoofast.fr a les réponses. Revenez souvent pour rester informé.