Trouvez des réponses à vos questions avec l'aide de la communauté Zoofast.fr. Posez vos questions et recevez des réponses rapides et bien informées de la part de notre réseau de professionnels expérimentés.
Sagot :
Réponse : Je trouve une aire de [tex]\sqrt{3} - \frac{pi}{2}[/tex] soit environ 0,161
Explications étape par étape
Tout d'abord, j'ai imaginé l'existence d'un triangle équilatéral reliant le centre des 3 cercles. On a donc un triangle de côté 2 (1 rayon de cercle + 1 autre).
Calculons l'aire de ce triangle: A_T = [tex]\sqrt{3}[/tex] * côté²/4 = [tex]\sqrt{3}[/tex] * 1 = [tex]\sqrt{3}[/tex]
On a désormais l'aire du triangle, mais il reste 3 petites parties de chaque cercle à retirer à cette aire pour avoir l'aire centrale.
On va trouver l'aire d'une petite partie de cercle.
Raisonnons à partir de l'aire d'un cercle : A_C = pi [tex]r^{3}[/tex] = pi
Or on sait qu'un cercle à un angle d'ouverture de 2pi.
Il faut trouver l'angle d'ouverture de la petite partie de cercle.
Un triangle équilatéral a 3 mêmes angles, notons cet angle β, on a:
3β = pi (car la somme de chaque angle d'un triangle est égale à pi)
On a ainsi un angle d'ouverture de β = pi/3 pour la petite partie de cercle.
On fait maintenant une règle de trois :
2pi <=> A_C = pi
pi/3 <=> pi/6 = A_petite_partie_C
On a donc désormais tout ce qu'il nous faut pour calculer l'aire du milieu.
On A_milieu = A_T - 3*A_petite_partie_C = [tex]\sqrt{3} - \frac{pi}{2}[/tex]
(aire du triangle équilatéral auquel on retire l'aire des 3 petites parties de chaque cercle).
Nous sommes ravis de vous avoir parmi nous. Continuez à poser des questions et à partager vos réponses. Ensemble, nous pouvons créer une ressource de connaissances précieuse pour tous. Nous espérons que vous avez trouvé ce que vous cherchiez sur Zoofast.fr. Revenez pour plus de solutions!