Obtenez des solutions complètes à vos questions avec Zoofast.fr. Découvrez des réponses approfondies de nos professionnels expérimentés, couvrant un large éventail de sujets pour satisfaire tous vos besoins d'information.

SVP VEUILLEZ M'AIDER AU PLUS VITE .MERCI D'AVANCE

 

Soit f une fonction définie sur l'intervalle ]2;+ l'infini[ par : 

f(x)=x-1-(2/x-2)

On note C la courbe représentative de la fonction f dans un repère orthornormé d'unité 1cm.

 

QUESTIONS:

 

1) Soit f' la fonction dérivée de f.Déterminer f'(x)

 

2) Montrer que, pour tout x de 'intervalle ]0;+ l'infini[ ,f'(x)>0

 

3) En déduire le tableau de variation de la fonction f

 

4) Déterminer lim f(x) quand x tend vers 2 .Quelle asymptote DELTA en déduit-on pour la courbe C

 

5) Calculer f(x)-(x-1)   PUIS Déterminer lim (f(x)-(x-1)) quand x tend vers + l'infini

 

6) Que peut-on en déduire pour la courbe C et la droite D d'équation y=x-1 ?

Sagot :

Bonsoir

f' vaut 1+2/(x-2)^2 qui est donc bien un nombre >0 (un carré est tjs >=0)

 

f est donc croissante de f(0)=2 à +inf quand tend vers 2- puis de -inf (quand x tend vers 2+) à +inf qui est sa limite en +inf.

 

DELTA : x=2

 

f(x)-(x-1) c'est _2/(x-2) donc cela tend vers 0- y=x-1 est asymptote à C et C est en dessous de la droite

 

 

Bonjour,

 

1)

f(x)=x-1-(2/(x-2))

 

f'(x)=1-(-2/(x-2)²=

 

[tex]f'(x)=1-\frac{-2}{(x-2)^2}=\frac{(x-2)^2+2}{(x-2)^2}=\frac{x^2-4x+2+2}{(x-2)^2}=\frac{x^2-4x+4}{(x-2)^2}[/tex]

 

2)

 

(x-2)² >0

 

on cherche le signe de x²-4x+4 de la forme ax²+bx+c

 

delta =16-16=0

 

une seule racine x1=-b/2a=4/2=2

 

Comme a est >0, la concavité est orientée vers le haut, et comme  x1 est le sommet de la parabole, f'(x) est toujours >0.

3)

 

I= ]2;+ l'infini [ f'(x)  >0 f(x) est croissante.

 

4) Déterminer lim f(x) quand x tend vers 2 .Quelle asymptote DELTA en déduit-on pour la courbe C

 

lim -2/(x-2)=-inf

x-->2

 

donc f(x)= 1-inf=-inf

x-->2

 

f(x) à pour assymptote x=2

 

5) Calculer f(x)-(x-1)   puis Déterminer lim (f(x)-(x-1)) quand x tend vers + l'infini

 

 f(x)-(x-1)=x-1-(2/(x-2))-(x-1)=2/(x-2)

 

donc

lim 2/(x-2)= 0

x-->+inf

 

lim (f(x)-(x-1))=0

x-->+inf

 

6)

 

Comme leur différence tend vers 0, on peut dire que vers +infini C et la droite D se confondent donc y=x-1 est assymptote à C.

 

J'espère que tu as compris

 

A+