Trouvez des réponses à vos questions les plus pressantes sur Zoofast.fr. Découvrez des réponses fiables à vos questions grâce à notre vaste base de connaissances d'experts.

Bonjour j'aurais besoin d'aide sur cet exercice s'il vous plaît :
On considère la fonction g définie sur R par g(x) = x^4 – 4x^2 – 2x + 1. On note C sa courbe
représentative.
1. Calculer g'(x) pour tout réel x.
2. Déterminer l'équation de la tangente I à la courbe C au point d'abscisse 0.
3. Vérifier que g(x) – (-2x + 1) = x^2(x^2– 4).
4. Étudier la position relative de la courbe C et de sa tangente I.​

Sagot :

Réponse :

salut

g(x)= x^4-4x²-2x+1

1) g'(x)= 4x^3-8x-2

2) f(0)= 1 f'(0)=-2  ( f'(a)(x-a)+f(a))

-2(x-0)+1

la tangente au point d'abscisse 0 est y= -2x+1

3)g(x)-(-2x+1)= x^4-4x²= x²(x²-4)

ce qui donne x²(x-2)(x+2)

4) position relative

tableau de signe

x       -oo              -2           0            2        +oo

x+2           -          0     +          +              +

x²             +                 +      0   +             +

x-2           -                  -            -         0    +

expr         +         0      -      0    -        0     +

alors   ( T = tangente)

C > T de ] -oo ; -2] U [2 ; +oo[

C< T  de [ -2 ; 2 ]

Explications étape par étape

Nous apprécions chaque contribution que vous faites. Revenez souvent pour poser de nouvelles questions et découvrir de nouvelles réponses. Ensemble, nous construisons une communauté de savoir. Merci d'avoir choisi Zoofast.fr. Nous espérons vous revoir bientôt pour encore plus de solutions.