Profitez au maximum de vos questions avec les ressources d'Zoofast.fr. Accédez à des milliers de réponses vérifiées par des experts et trouvez les solutions dont vous avez besoin, quel que soit le sujet.

Bonjour, j’ai besoin d’aide! J’aimerai des reponse détaillées.
1) Donner le coefficient multiplicateur
correspondant à une hausse de 13%,
2) Dire si le coefficient multiplicateur.0,6 correspond
à une hausse ou une baisse et indiquer le
pourcentage d'évolution associé
3) Un objet coute 806
Déterminer son prix après une hausse de 10 %
4) Une maison avait une superficie de 160 m. Les
propriétaires ont réalisé une extension de 32 m
Déterminer l'évolution, en pourcentage, de la
superficie de cette maison
5) Un prix diminue de 10 % puis à nouveau de 10 %.
Déterminer le pourcentage d'évolution globale
correspondant
6) Dresser le tableau de signes sur R de 5x - 9.
7) Donner la forme factorisée du polynome
3x? - 6x - 24 sachant que ses racines
sont-2 et 4
8) Déterminer le tableau de signes de l'expression:
(x+3)(x - 1)
9) Résoudre dans R l'inéquation 6x - 35x+7.
10) Résoudre dans R l'équation 4x?- 160

Sagot :

1) Augmenter un nombre x de t% revient à le multiplier par (1 + t/100). Donc le coefficient multiplicateur correspondant à une hausse de 13% est : 1 + 13/100 = 1,13.

2) Le coefficient multiplicateur revient à une baisse. Diminuer un nombre x de t% revient à le multiplier par (1 - t/100). Donc il correspond à une baisse de 40% : 1 - 40/100 = 0,60.

3) 806 * (1 + 10/100) = 886,60. Le prix de l’objet après une hausse de 10% est de 886,60€.

4)
• Une maison avait une superficie de 160m, ce sera donc la valeur initiale et ensuite, elle se retrouve avec une extension de 32m, donc 192 sera la valeur finale : 160 + 32 = 192.
• Pour obtenir le facteur d’accroissement, il suffit de diviser la valeur finale par la valeur initiale 192 / 160 = 1,2.
• Il est important de multiplier ce résultat par 100 pour obtenir un pourcentage. Comme la valeur finale est supérieure à la valeur initiale, on doit trouver un pourcentage supérieur à 100. On fait donc : 1,2 * 100 = 120%. La superficie de la maison avec 192m représente 120% de celle avec 160m.
• Si on soustrait ce pourcentage trouvé par 100, on obtient le pourcentage de hausse. 120% - 100% = 20%, soit une hausse de 20% de la superficie de la maison.

5)
• Pour calculer le taux d’évolution global de plusieurs évolutions successives de taux identiques : on détermine le nombre n d’évolutions successives de la période concernée, on détermine le coefficient multiplicateur global des n évolutions successives de taux sous forme décimale : 1 + T= (1 + t1) * (1 + t2) * ... * (1 + tn), on en déduit le taux d’évolution d’évolution global : (1 + t1)×(1 + t2) * ... * (1 + tn) - 1, on conclut ensuite.
• Le prix d’un produit a subi successivement une baisse de 10% et encore 10%.
• Il y a eu deux évolutions successives donc n = 2. Le coefficient multiplicateur global est : 1 + T = (1 - 0,08) * (1-0,08) = 0,90 * 0,90 = 0,81.
• Le taux d’évolution global est donc : T = 0,81 - 1 = -0,19.
• En conclusion, le prix du produit a diminué de 19%.