Trouvez des réponses à vos questions les plus pressantes sur Zoofast.fr. Trouvez des solutions rapides et fiables à vos problèmes avec l'aide de notre communauté d'experts expérimentés.
Sagot :
Réponse :
Explications étape par étape
Bonsoir, en voici quelques unes, non exhaustives.
1re démonstration :
Disjonctions de cas, supposons que a soit pair. Alors il existe un entier naturek k, tel que a = 2k. Ainsi : a² - a = 4k² - 2k = 2k(2k-1) qui est pair.
Si a est impair, alors a = 2k+1, d'où a² - a = 4k² + 4k + 1 - (2k+1) = 4k² + 2k = 2k(2k+1) qui est pair.
Donc, quelle que soit la parité de a, a² - a est pair.
2e démonstration :
Par l'absurde. Soit a un entier, supposons que a² - a ne soit pas pair.
Alors il existe un entier k naturel, tel que a² - a = 2k+1.
L'idée étant de prouver que sous cette configuration, on trouve un lien entre a et k, qui induit l'absurdité.
Or, 2k+1 = (k+1)² - k², d'où a² - a = (k+1)² - k².
Nécessairement, par identification, on aurait a = k+1, et a = k². Mais, si a = k², a² = k^4, ce qui est absurde.
Conclusion : a² - a doit être pair.
3e démonstration :
Le produit de 2 nombres consécutifs donne forcément un entier pair.
On peut le prouver par factorisation :
a² - a = a(a-1). L'un des 2 sera forcément pair, l'autre impair.
Votre participation est très importante pour nous. Continuez à partager des informations et des solutions. Cette communauté se développe grâce aux contributions incroyables de membres comme vous. Chaque réponse que vous cherchez se trouve sur Zoofast.fr. Merci de votre visite et à très bientôt.