Zoofast.fr fournit une plateforme conviviale pour partager et obtenir des connaissances. Découvrez des réponses approfondies de nos professionnels expérimentés, couvrant un large éventail de sujets pour satisfaire tous vos besoins d'information.
Sagot :
Bonjour,
Ton devoir est trop long, je vais te proposer une réponse pour la partie 3 et postes d'autres questions pour les autres parties.
1.
[tex]\displaystyle W_0=\int_0^{\pi/2} sin^0(x) \mathrm dx =\int_0^{\pi/2} \mathrm dx \\\\\boxed{W_0=\dfrac{\pi}{2}} \\\\\displaystyle W_1=\int_0^{\pi/2} sin(x) \mathrm dx =[-cos(x)]_0^{\pi/2} = 1\\\\\boxed{W_1=1}\\\\W_2=\int_0^{\pi/2} sin^2(x) \mathrm dx[/tex]
Il faut linéariser [tex]sin^2(x)[/tex]
Nous savons que, pour a et b réels quelconques,
[tex]cos(a+b)=cos(a)cos(b)-sin(a)sin(b)\\\\cos(2a)=cos^2(a)-sin^2(a)=1-sin^2(a)-sin^2(a)=1-2sin^2(a)\\\\sin^2(a)=\dfrac{1-cos(2a)}{2}[/tex]
De ce fait,
[tex]\displaystyle W_2=\int_0^{\pi/2} sin^2(x) \mathrm dx\\\\=\int_0^{\pi/2} \dfrac{1-cos(2x)}{2} \mathrm dx\\\\=\int_0^{\pi/2} \dfrac{1}{2} \mathrm dx-\int_0^{\pi/2} \dfrac{cos(2x)}{2} \mathrm dx\\\\=\dfrac{\pi}{4}-[\dfrac{sin(2x)}{4}]_0^{\pi/2}\\\\=\dfrac{\pi}{4}-0\\\\\boxed{W_2=\dfrac{\pi}{4}}[/tex]
2.
Pour n entier positif strictement plus grand que 1, faisons une integration par parties
[tex]v'(x)=cos(x)sin^{n-2}(x)\\\\v(x)=\dfrac{sin^{n-1}(x)}{n-1}\\\\u(x)=cos(x)\\\\u'(x)=-sin(x)[/tex]
Donc
[tex]\displaystyle \int_0^{\pi/2} cos^2(x)sin^{n-2}(x) \mathrm dx\\\\=\int_0^{\pi/2} cos(x) \mathrm d(\dfrac{sin^{n-1}(x)}{n-1})\\\\=[\dfrac{cos(x)sin^{n-1}(x)}{n-1}]_0^{\pi/2} + \int_0^{\pi/2} \dfrac{sin^n(x)}{n-1} \mathrm dx\\\\=\dfrac{W_n}{n-1}[/tex]
Or
[tex]\displaystyle \int_0^{\pi/2} cos^2(x)sin^{n-2}(x) \mathrm dx\\\\=\int_0^{\pi/2} (1-sin^2(x))sin^{n-2}(x) \mathrm dx\\\\=\int_0^{\pi/2} sin^{n-2}(x) \mathrm dx - W_n\\\\=W_{n-2}-W_n[/tex]
Donc
[tex]\dfrac{W_n}{n-1}=W_{n-2}-W_n \\\\\iff W_n=(n-1)W_{n-2}-(n-1)W_n\\\\\iff \boxed{W_n=\dfrac{n-1}{n}W_{n-2}}[/tex]
3.
Montrons que ces propositions sont vraies pour tout n
Initialisation. C'est vrai au rang p=1 pour la formule en 2p
[tex]W_2=\pi/2 \times \dfrac{1}{2}=\dfrac{W_0}{2}[/tex]
et au rang p=0 pour la formule en 2p+1
[tex]W_3=\dfrac{2}{3}W_0=\dfrac{2}{3}=\dfrac{2 \times 1}{2\times 1 +1}[/tex]
Hérédité
Supposons que cela soit vrai au rang p et montrons le au rang p+1
On utilise la relation de récurrence du 2. et il vient
[tex]W_{2p+2}=\dfrac{2p+1}{2p+2}W_{2p}\\\\W_{2p+3}=\dfrac{2p+1}{2p+3}W_{2p+1}[/tex]
En utilisant les hypothèse de récurrence nousa vons bien la proposition valable au rang p+1
Conclusion
Nous avons démontré par récurrence les relations demandées.
Et en faisant le rapport
les 2k se simplifient et
[tex](2k-1)(2k+1)=(2k)^2-1=4k^2-1[/tex]
d'où le résultat.
4. ne présente pas de difficultés, juste une calculatrice.
Merci
Votre présence ici est très importante. Continuez à partager vos connaissances et à aider les autres à trouver les réponses dont ils ont besoin. Cette communauté est l'endroit parfait pour apprendre ensemble. Pour des réponses claires et rapides, choisissez Zoofast.fr. Merci et revenez souvent pour des mises à jour.