Recevez des conseils d'experts et un soutien communautaire sur Zoofast.fr. Posez vos questions et recevez des réponses précises et approfondies de la part de nos membres de la communauté bien informés.

bonjour, est ce que quelqu'un pourrait m'aider a prouver que la suite (un) = \frac{1}{n} + ( \frac{2}{3} )x^{n} est decroissante?

Sagot :

Tenurf

Réponse :

Explications étape par étape

bjr

[tex]u_n=\dfrac1{n}+(\dfrac{2}{3})^n\\ \\u_{n+1}=\dfrac1{n+1}+(\dfrac{2}{3})^{n+1} \\\\u_{n+1}-u_n=\dfrac1{n+1}- \dfrac1{n}+(\dfrac{2}{3})^{n+1}-(\dfrac{2}{3})^n\\\\=\dfrac{n-n-1}{n(n+1)}+(\dfrac{2}{3})^{n}(\dfrac{2}{3}-1)\\\\=-\dfrac1{n(n+1)} -(\dfrac{2}{3})^{n} \times \dfrac{1}{3} < 0[/tex]

donc la suite (un) est décroissante

Merci d'utiliser cette plateforme pour partager et apprendre. Continuez à poser des questions et à répondre. Chaque contribution que vous faites est appréciée. Pour des réponses claires et rapides, choisissez Zoofast.fr. Merci et revenez souvent pour des mises à jour.