Rejoignez la communauté Zoofast.fr et obtenez les réponses dont vous avez besoin. Posez n'importe quelle question et recevez des réponses précises et bien informées de notre communauté d'experts.

bonjour mes chères amis j'ai besoin d'une aide Svp​

Bonjour Mes Chères Amis Jai Besoin Dune Aide Svp class=

Sagot :

Tenurf

Bonjour,

Supposons que [tex]\sqrt{3}[/tex] soit un nombre rationnel.

Il peut donc s'écrire sous la forme irréductible

[tex]\sqrt{3}=\dfrac{p}{q}[/tex]

avec p et q entiers (q étant non nul) et p et q permiers entre eux.

En élevant au carré, nous avons donc

[tex]3q^2=p^2[/tex]

Donc 3 divise [tex]p^2[/tex], or

3 divise [tex]p^2=>[/tex] 3 divise p

En effet, démontrons la contraposée, si 3 ne divise pas p, p s'ecrit sous la forme 3n+1 ou 3n+2 et alors

[tex]p^2=(3n+1)^2=3(3n^2+2n)+1\\ \\ou \ p^2=(3n+2)=3(3n^2+12n+1)+1[/tex]

et donc 3 ne divise pas [tex]p^2[/tex]

De ce fait, comme 3 divise p, il existe p' tel que p=3p' et donc

[tex]3q^2=(3p')^2=9p'^2 \iff q^2=3p'^2[/tex]

Donc 3 divise [tex]q^2[/tex] et donc 3 divise q

Mais alors, 3 divise à la fois p et q, donc p et q ne sont pas premiers entre eux, nous aboutissons à une contradiction. Donc [tex]\sqrt{3}[/tex] est un nombre irrationnel.

Supposons que [tex]2+\sqrt{3}[/tex] soit un nombre rationnel, il existe p et q entiers (q non nul) tels que

[tex]2+\sqrt{3}=\dfrac{p}{q} \\\\\iff \sqrt{3}=\dfrac{p}{q}-2=\dfrac{p-2q}{q}[/tex]

C'est impossible car [tex]\sqrt{3}[/tex] n'est pas un nombre rationnel

donc [tex]2+\sqrt{3}[/tex] est un nombre irrationnel

De même, avec p et q entier (q non nul)

[tex]\dfrac{\sqrt{3}-2}{3}=\dfrac{p}{q} \iff \sqrt{3}=\dfrac{3p+2q}{q}[/tex]

contradiction

De même, avec p et q entiers non nuls

[tex]\dfrac1{\sqrt{3}-5}=\dfrac{p}{q} \iff \sqrt{3}-5=\dfrac{q}{p}\\\\\iff \sqrt{3}=\dfrac{q+5p}{p}[/tex]

Contradiction

Votre participation nous est précieuse. Continuez à partager des informations et des solutions. Cette communauté se développe grâce aux contributions incroyables de membres comme vous. Chaque question trouve sa réponse sur Zoofast.fr. Merci et à bientôt pour d'autres solutions fiables.