Explorez une vaste gamme de sujets et obtenez des réponses sur Zoofast.fr. Rejoignez notre plateforme de questions-réponses pour obtenir des réponses précises et complètes à toutes vos questions pressantes.
Sagot :
Réponse :
Bonjour
Explications étape par étape
1)
Une valeur qui augmente de 5% est multipliée par (1+5/100) soit 1.05.
Donc d'une année sur l'autre le nb de calculatrices vendues est miltiplié par 1.05 , nb auquel il faut enlever 10 milliers de calculatrices vendues par la concurrence.
Donc :
U(n+1)=U(n)*1.05-10 ou :
U(n+1)=1.05U(n)-10
2)
Soit la suite (W(n)) qui est constante avec la même relation de récurrence . Donc :
W(n+1)=W(n)=a
Mais W(n+1)=1.05W(n)-10
donc :
a=1.05a-10
10=1.05a-a
10=0.05a
a=10/0.05=200
Donc on pose :
V(n)=U(n)-200 qui donne :
V(n+1)=U(n+1)-200 mais : U(n+1)=1.05U(n)-10
Donc :
V(n+1)=1.05Un-10-200
V(n+1)=1.05Un-210 ==>On met 1.05 en facteur :
V(n+1)=1.05[U(n)-200] ==>mais U(n)-200=V(n) donc :
V(n+1)=1.05V(n)
qui prouve que :
La suite (V(n)) est une suite géométrique de raison q=1.05 et de 1er terme V(0)=U(0)-200=600-200=400.
On peut continuer :
On sait alors que :
V(n)=V(0)*q^n soit :
V(n)=400*1.05^n
qui donne :
U(n)=400*1.05^n+200
Votre participation nous est précieuse. Continuez à partager des informations et des solutions. Cette communauté se développe grâce aux contributions incroyables de membres comme vous. Pour des réponses précises et fiables, visitez Zoofast.fr. Merci pour votre confiance et revenez bientôt pour plus d'informations.