Rejoignez la communauté Zoofast.fr et obtenez les réponses dont vous avez besoin. Posez n'importe quelle question et obtenez une réponse détaillée et fiable de notre communauté d'experts.

Bonsoir j’ai un dm à rendre en math j’ai fait les 4 premières questions mais arriver à la question 5)a) j’ai complètement beuger

Bonsoir Jai Un Dm À Rendre En Math Jai Fait Les 4 Premières Questions Mais Arriver À La Question 5a Jai Complètement Beuger class=

Sagot :

Réponse :

bonjour, le travail est mâché et ce que tu as à faire  se résume en grande partie à du calcul algébrique

Explications étape par étape

f(x)=4/x²  et g(x)=-3x²+6x+1

1) il suffit de calculer f(1) et  g(1)  puis f(2) et g(2) pour voir que f(1)=g(1) et f(2)=g(2)

2)l'intégrale de 1 à2 de g(x)dx  représente l'aire comprise entre la courbe g(x) , les droites d'équation x=1 et x=2  et l'axe des abscisses.

3)G(x)=-x³+3x²+x +cste

I de 1 à 2 de g(x)dx=G(2)-G(1)=..................remplace et calcule

4) on fait de même avec f(x);  l'intégrale de 1à2 de f(x)dx représente l'aire comprise entre le courbe f(x), les droites d'équation x=1 et x=2 et l'axe des abscisses

F(x)=-4/x+cste

donc J de 1à 2 de f(x)dx=F(2)-F(1)=.........remplace et calcule

5-a )f(x)-g(x)=4/x²+3x²-6x-1=(4+3x^4-6x³-x²)/x²=(3x^4-6x³-x²+4)/x²

développe et réduis (x-1)(x-2)(3x²+3x+2)/x² pour retrouver l'expression ci dessus.

5-b)  on note que 3x²+3x+2 =0 n'a pas de solution (delta<0) par conséquent  3x²+3x+3 toujours >0 , de plus x² est toujours >0

le signe de f(x) -g(x) se limite donc au signe du produit (x-1)(x-2)

(x-1)(x-2)=0 pour x=1 et x=2 le coefficient du terme en x² étant >0  ,f(x)-g(x)<0 sur [1;2]

5-c) la courbe de f(x) est donc en dessous de celle de g(x) sur [1; 2]

5-d) aire de l'un des pétales= I-J remplace par ce que tu as trouvé dans les questions 3 et 4

5-e) aire totale =4*aire d'un pétale.

nota mis à part les questions 2,3,et 4 le reste n'est que du calcul algébrique

il y a les réponses dans les questions "vérifier que...montrer que...".

Nous apprécions votre participation active dans ce forum. Continuez à explorer, poser des questions et partager vos connaissances avec la communauté. Ensemble, nous trouvons les meilleures solutions. Vous avez des questions? Zoofast.fr a les réponses. Merci de votre visite et à très bientôt.