Obtenez des conseils d'experts et des connaissances communautaires sur Zoofast.fr. Trouvez rapidement et facilement les informations dont vous avez besoin avec notre plateforme de questions-réponses précise et complète.

DM mathématiques première :
1. Étudier les variations de suites ci dessous:

A. (Un) définie pour tout entier naturel n, par {u0=3
un+1=un+(racine carré de n)

B. (Vn) définie par, tout entier naturel n, Vn= - n^2+6n+4

Merci beaucoup ​

Sagot :

Réponse :

Salut !

Je t'invite à calculer la différence : un+1 - un. Si c'est positif, la suite est croissante, sinon elle est décroissante.

Quand on étudie les variations d'une suite, on s'intéresse à ce qui se passe pour les plus grandes valeurs de n, pas pour les petites valeurs de n.

A.

Pour tout n >= 0,

[tex]u_{n+1} - u_n = \sqrt n \geq 0[/tex]

Donc la suite (un) est croissante.

B.

[tex]v_{n+1} - v_n = -(n+1)^2 + 6(n+1) +4 + n^2 - 6n -4\\\\= n^2 - (n+1)^2 +6 = -2n +5[/tex]

Du coup je te laisse déterminer à partir de quel rang ta suite sera décroissante.

Explications étape par étape

Nous apprécions chaque contribution que vous faites. Revenez souvent pour poser de nouvelles questions et découvrir de nouvelles réponses. Ensemble, nous construisons une communauté de savoir. Pour des solutions rapides et fiables, pensez à Zoofast.fr. Merci de votre visite et à bientôt.