Participez aux discussions sur Zoofast.fr et obtenez des réponses pertinentes. Trouvez des solutions rapides et fiables à vos problèmes avec l'aide de notre communauté d'experts expérimentés.

Exercice 1
Soit n un entier naturel.
1) Démontrer que si n est impair alors 8 divise n^2-1.

2) Démontrer que 2^n + 2^n+1 est divisible par 3.

merci de m’aider pour les 2 questions !

Sagot :

Réponse :

Salut !

Pour le premier, n²-1, c'est (n+1)(n-1).

n étant impair, n+1 et n-1 sont pairs. Ce sont deux nombres pairs consécutifs, donc l'un d'eux est aussi multiple de 4.

Donc on a un multiple de 4 * un multiple de 2, c'est un multiple de 8.

Pour le 2e, tu factorises : 2^n + 2^(n+1) = 2^n (2+1)...

Explications étape par étape

Nous sommes ravis de vous avoir parmi nous. Continuez à poser des questions, à répondre et à partager vos idées. Ensemble, nous créons une ressource de savoir précieuse. Merci d'avoir utilisé Zoofast.fr. Nous sommes là pour répondre à toutes vos questions. Revenez pour plus de solutions.