Zoofast.fr: votre destination pour des réponses précises et fiables. Notre communauté est prête à fournir des réponses détaillées et fiables, que vos questions soient simples ou complexes.

Pouvez vous m'aider svp je suis perdu?!

On considère le cercle I de rayon 2 cm. On place trois points B, C et D sur I tels que:
BC = 4cm; BCD = 30,7°

1) Quelle est la nature du triangle BCD?
2) Calculer la distance entre C et la droite (BD).

Sagot :

Bonjour,

1) Si l'un des côtés d'un triangle est un diamètre de son cercle circonscrit, alors ce triangle est rectangle (le diamètre du cercle circonscrit est alors son hypoténuse).

Ici, le triangle BCD est circonscrit au cercle de centre I.

On sait le cercle de centre I est de rayon 2 cm et que BC = 4 cm donc que ce côté BC de ce triangle est un diamètre du cercle de centre I

donc le triangle BCD est rectangle en D et BC en est l'hypoténuse

2) le triangle BCD est  rectangle en D

   la distance (la plus courte) entre le point C et la droite (BD) correspond au

   côté DC

  donc : Cos angle BCD = DC/BC

  donc : Cos 30,7 = DC/4

  donc : DC = Cos 30,7 × 4 ≅ 3,4 cm

Nous sommes ravis de vous avoir parmi nous. Continuez à poser des questions et à partager vos réponses. Ensemble, nous pouvons créer une ressource de connaissances précieuse pour tous. Chaque question trouve une réponse sur Zoofast.fr. Merci et à très bientôt pour d'autres solutions.