Rejoignez Zoofast.fr et commencez à obtenir les réponses dont vous avez besoin. Découvrez des réponses détaillées et fiables à toutes vos questions de la part de nos membres de la communauté bien informés toujours prêts à assister.
Sagot :
Bonjour,
J'espère que tu as réfléchi à l'exercice en t'aidant de mon indication. Voici ma correction.
a) La fonction [tex]t \mapsto \dfrac{t^2}{\sqrt{\sin(t^7+t^2)}}[/tex] est définie et continue sur [tex]]0,1][/tex] (car [tex]\sin(t^7+t^5)>0[/tex] pour [tex]0<t\le1[/tex]).
Le seul problème est donc en 0.
On va donc trouver un équivalent de l'intégrande quand t tend vers 0.
[tex]\sin(t^7+t^5) \underset{t \to 0}{\sim} t^5[/tex]
donc (on peut appliquer des puissances à un équivalent) :
[tex]\sqrt{\sin(t^7+t^5)} \underset{t \to 0}{\sim} t^{5/2}[/tex]
d'où finalement (on peut faire des quotients d'équivalents) :
[tex]\dfrac{t^2}{\sqrt{\sin(t^7+t^5)}} \underset{t \to 0}{\sim} \dfrac{t^2}{t^{5/2}}=\dfrac{1}{\sqrt t}[/tex]
et [tex]t \mapsto \dfrac{1}{\sqrt t}[/tex] est intégrable en 0 (intégrale de référence).
En conclusion, [tex]\int^1_0 {\dfrac{t^2}{\sqrt{\sin(t^7+t^5)}} \, \mathrm{d}t[/tex] existe bien.
b) La fonction [tex]x \mapsto \cos(\mathrm{e}^{2x})[/tex] est définie est continue sur [tex]\mathbb{R}_+[/tex].
Le seul problème est donc en [tex]+ \infty[/tex].
Pour moi, le plus simple est de faire le changement de variable [tex]u=\mathrm{e}^{2x}[/tex] (attention à vérifier qu'il est bien licite : c'est parce que [tex]x \mapsto \mathrm{e}^{2x}[/tex] est [tex]C^1[/tex] et bijective de [tex]\mathbb{R}_+[/tex] dans [tex][1,+\infty[[/tex]).
Par les théorèmes généraux, [tex]\int^{+\infty}_0 {\cos(\mathrm{e}^{2x})} \, \mathrm{d}x[/tex] a donc même nature que [tex]\int^{+\infty}_1 {\dfrac{\cos(u)}{2u}} \, \mathrm{d}u[/tex] donc que [tex]\int^{+\infty}_1 {\dfrac{\cos(u)}{u}} \, \mathrm{d}u[/tex].
On cherche donc à déterminer la nature de [tex]\int^{+\infty}_1 {\dfrac{\cos(u)}{u}} \, \mathrm{d}u[/tex].
Par intégration par parties, sous réserve d'existence des intégrales et du crochet :
[tex]\int^{+\infty}_1 {\dfrac{\cos(u)}{u}} \, \mathrm{d}u=\left[\dfrac{\sin(u)}{u}\right]_1^{+\infty}+\int^{+\infty}_1 {\dfrac{\sin(u)}{u^2}} \, \mathrm{d}u[/tex].
Comme le crochet converge [tex]\left(\dfrac{\sin(u)}{u}} \underset{u \to + \infty}{\to} 0\right)[/tex], [tex]\int^{+\infty}_1 {\dfrac{\cos(u)}{u}} \, \mathrm{d}u[/tex] a même nature que [tex]\int^{+\infty}_1 {\dfrac{\sin(u)}{u^2}} \, \mathrm{d}u[/tex].
Or, pour tout [tex]u \in [1,+\infty[[/tex], [tex]\left|\dfrac{\sin(u)}{u^2}} \right| \le \dfrac{1}{u^2}[/tex] et [tex]\int^{+\infty}_1 {\dfrac{1}{u^2}} \, \mathrm{d}u[/tex] converge (intégrale de référence).
Ainsi, par comparaison, [tex]\int^{+\infty}_1 {\dfrac{\sin(u)}{u^2}} \, \mathrm{d}u[/tex] converge donc [tex]\int^{+\infty}_1 {\dfrac{\cos(u)}{u}} \, \mathrm{d}u[/tex] converge.
En conclusion, [tex]\int^{+\infty}_0 {\cos(\mathrm{e}^{2x})} \, \mathrm{d}x[/tex] converge.
c) La fonction [tex]x \mapsto \arctan(\frac{1}{x})[/tex] est définie et continue sur [tex][1,+\infty[[/tex] (je t'encourage à le vérifier, cela vient du fait que [tex]0\le x\le 1 <\frac{\pi}{2}[/tex] sur cet intervalle).
Le seul problème est donc en [tex]+\infty[/tex].
On fait donc un équivalent :
[tex]\arctan(h) \underset{h \to 0}{\sim} h[/tex]
donc, en posant [tex]h=\frac{1}{x}[/tex] ([tex]h \to 0[/tex] quand [tex]x \to +\infty[/tex]) :
[tex]\arctan(\frac{1}{x}) \underset{x \to +\infty}{\sim} \frac{1}{x}[/tex].
Or, la fonction [tex]x \mapsto \frac{1}{x}[/tex] n'est pas intégrable en [tex]+\infty[/tex] (intégrale de référence), donc [tex]\int^{+\infty}_1 {\arctan(\frac{1}{x})} \, \mathrm{d}x[/tex] diverge (et vaut [tex]+\infty[/tex] car l'intégrande est positive).
Voilà. N'hésite pas à demander des précisions !
Nous apprécions chaque contribution que vous faites. Revenez souvent pour poser de nouvelles questions et découvrir de nouvelles réponses. Ensemble, nous construisons une communauté de savoir. Vous avez des questions? Zoofast.fr a les réponses. Merci pour votre visite et à bientôt.