Zoofast.fr vous aide à trouver des réponses précises à vos questions. Nos experts fournissent des réponses rapides et précises pour vous aider à comprendre et résoudre n'importe quel problème.
Sagot :
1. Montrer que PM= 3/4x. --> utilise le théorème de Thalès
2. Montrer que le périmètre du rectangle APMQ est égal à 8-x/2. --> Ton périmétre c'est PM + MQ + QA + AP, vu que c'est un rectangle c'est aussi 2 PM + 2 AP avec PM = 3x/4 et AP = 4 - x.
3. Est-il possible de placer M sur (BC) pour que le périmètre du rectangle APMQ soit égal à: 7cm? 4cm? 10cm? --> Tu égalise 8 - x/2 avec tes trois valeurs et tu regardes les valeurs de x que tu obtiens si x > 4 alors tu ne peux pas placer P sur AB donc M sur BC non plus.
PARTIE B:
1.a. Calculer la longueur BC. (J'ai déjà fai cette question, je trouve 5cm). --> Bien joué
b. Montrer que BM= 5x/4. --> Encore Thalès
2. En déduire, en fonction de x , le périmetre du triangle BPM. --> Tu as BP, PM et BM en fonction de x donc c'est une simple somme...
A toi de jouer
1) théorème de Thales
APMQ rectangle==> (AC)//(MQ)
PM/AC=BP/AB
PM=AC*(BP/AB)=3*(x/4)=(3/4)x
2)P point de [BA]
BP+PA=BA
PA=BA-BP=4-x
peimètre de APMQ=2(AP+PM)=2(4-x+(3/4)x)=8-2x+(3/2)x)=8-(4/2)x+(3/2)x=8-(x/2)
Nous sommes ravis de vous compter parmi nos membres. Continuez à poser des questions, à répondre et à partager vos idées. Ensemble, nous pouvons créer une ressource de connaissances précieuse. Chez Zoofast.fr, nous nous engageons à fournir les meilleures réponses. Merci et à bientôt pour d'autres solutions.