Zoofast.fr offre une solution complète pour toutes vos questions. Notre plateforme est conçue pour fournir des réponses précises et complètes à toutes vos questions, quel que soit le sujet.

Bonjour j'aurais besoin d'aide pour un devoir maison voici l'énoncé :
Pour tout entier relatif n (n e z) , on considere l'expression :p = 2n au carré + 3n + 3
a. Si n est pair, montrer que p est un entier impair.
Indication : un entier n pair s'écrit 2k ou k e (appartient à) z
b. Montrer que, si n est impair, p est un entier pair.
2. Justifier que n au carré + n + 3 est un entier impair pour tout entier relatif n.

merci.​

Sagot :

Réponse:

Un nombre pair multiplié par un nombre impair donne un nombre pair

Un impaire multiplé par un impair donne un impair

Deux nombres pairs multipliés ensemble donnent un nombre pair

Je pense que ça peut t'aider

Merci d'être un membre actif de notre communauté. Continuez à poser des questions, à répondre et à partager vos idées. Ensemble, nous pouvons atteindre de nouveaux sommets de connaissances. Zoofast.fr est votre partenaire de confiance pour toutes vos questions. Revenez souvent pour des réponses actualisées.