Obtenez des réponses claires et concises à vos questions sur Zoofast.fr. Notre communauté est là pour fournir les réponses complètes et précises dont vous avez besoin pour prendre des décisions éclairées.

Bonjour je dois faire cet exercice pour la rentrée pouvez-vous m’aider svp merci
Exercice 3 : Problème de géométrie et équation de droite
À partir d'un carré ABCD, on construit un triangle
équilatéral ABE à l'intérieur du carré et un triangle
équilatéral CBF à l'extérieur du carré. On obtient la figure
ci-contre.

Bonjour Je Dois Faire Cet Exercice Pour La Rentrée Pouvezvous Maider Svp Merci Exercice 3 Problème De Géométrie Et Équation De Droite À Partir Dun Carré ABCD On class=

Sagot :

Réponse :

On va résoudre ce problème avec les équation de droites: il y a un théorème qui dit : deux droites d'un même plan sont // si elles ont le même  coefficient directeur   de plus si elles ont un point commun elles sont confondues

Explications étape par étape

1) conjecture : les ponts D, E et F sont alignès

2) on va  calculer les coef.directeurs des droites (DE) et (DF)

coordonnées des points dazns le repère (A; vecAB; vecAD)

A(0; 0) ;  b(1;0)  C(1; 1) et  (D(0;1)

En 4ème avec le th. de Pythagore tu as appris que la hauteur d'un triangle équilatéral de côté a=(a*rac3)/2 dans notre exercice a=1 donc EH=(rac3)/2

il en est de même dans le triangle BCF la hauteur issue de F=(rac3)/2

avec ceci on calcule les coordonnées des points E et F

AE=AB/2  donc xE= 1/2et yE=(rac3)/2      E(1/2;(rac3)/2)

pourF: xF=1+(rac3)/2   et yF=1/2                F(1+(rac3)/2; 1/2)

il nous reste à calculer les coef. directeurs des droites

pour (DE)   a=(yE-yD)/(xE-xD)=[(rac3)/2-1]/(1/2-0)=2[(rac3)/2 -1)=-2+rac3

pour (DF)   a'=(yF-yD)/(xF-xD)=(1/2-1)/[1+(rac3)/2-0)=-1/2/[1+(rac3)/2]=-1/(2+rac3)

multiplions les deux termes du rapport par(2-rac3) donc a'=(-2+rac3)/(4-3)

a'=-2+rac3

Les droites (DE) et(DF) ont le même coefficient directeur  et un point commun D , les points  D, E et F sont  donc alignés.

4) l'équation de (DE) n'est pas nécessaire pour démontrer la conjecture

On a son coef. directeur  a=(-2+rac3) et l'ordonnée à l'origine b= yD=1

équation de (DE)      y=(-2+rac3)x+1