Participez aux discussions sur Zoofast.fr et obtenez des réponses pertinentes. Obtenez des réponses précises à vos questions grâce à notre communauté d'experts toujours prêts à fournir des solutions rapides et pertinentes.

bonjour
s'il vous plaît une aide à déterminer les limites suivante​
( c'est limites sont en relation avec la leçon de la continuité et les limites surtout la fonction racine niéme )

j'ai pas encore étudié la règle de l'Hôpital

et merci (ce pour demain s'il vous plaît aidez-moi)​

Bonjour Sil Vous Plaît Une Aide À Déterminer Les Limites Suivante Cest Limites Sont En Relation Avec La Leçon De La Continuité Et Les Limites Surtout La Fonctio class=

Sagot :

Tenurf

Bonjour,

Il faut multiplier par les parties conjuguées.

[tex]\left((x-1)^{\frac{1}{4}}-(3-x)^{\frac{1}{3}}\right)\left((x-1)^{\frac{1}{4}}+(3-x)^{\frac{1}{3}}\right)\\ \\= (x-1)^{1/2}-(3-x)^{2/3}\\ \\ \\\left( (x-1)^{1/2}-(3-x)^{2/3} \right) \left((x-1)^{\frac{1}{2}}+(3-x)^{\frac{2}{3}}\right)\\ \\= (x-1)-(3-x)^{4/3}\\\\\\\left( (x-1)-(3-x)^{4/3}\right) \times \left((x-1)^2+(x-1)(3-x)^{\frac{4}{3}}+(3-x)^{\frac{8}{3}} \right) \\\\=(x-1)^3-(3-x)^4 \\\\=(2-x)(x^3-11x^2+35x-41)[/tex]

Et de même pour le dénominateur qui donne

[tex]\left( (x-1)^{1/2}-(3-x)^{1/3} \right) \left( (x-1)^{1/2}+(3-x)^{4/3} \right) \\\\\times \left( (x-1)^2+(x-1)(3-x)^{2/3}+(3-x)^{4/3} \right)\\\\=(x-1)^3-(3-x)^2\\\\=2(x-2)(x^2-2x+5)[/tex]

Donc on peut éliminer par (x-2) au numérateur et dénominateur et on remplace x par 2 et ça donne:

[tex]\dfrac{2\times 3 \times 7}{2\times 2 \times 2 \times 3 \times 5}=\dfrac{7}{10}[/tex]

Merci

Nous apprécions votre participation active dans ce forum. Continuez à explorer, poser des questions et partager vos connaissances avec la communauté. Ensemble, nous trouvons les meilleures solutions. Nous espérons que vous avez trouvé ce que vous cherchiez sur Zoofast.fr. Revenez pour plus de solutions!