Bienvenue sur Zoofast.fr, votre plateforme de référence pour toutes vos questions! Posez n'importe quelle question et recevez des réponses rapides et bien informées de la part de notre communauté d'experts expérimentés.
Sagot :
Bonjour,
Pour la premiere limite c'est de la forme
[tex]\dfrac{f(x)}{g(x)}[/tex]
Avec f et g dérivable au voisinage de 2
On va utiliser la règle de l 'Hôpital.
[tex]f(x)=(x-1)^{\frac{1}{4}}-(3-x)^{\frac{1}{3}}\\ \\g(x)=(x-1)^{\frac{1}{4}}-(3-x)^{\frac{1}{3}} \\ \\f'(x)=\dfrac{1}{4}(x-1)^{\frac{-3}{4}}+(3-x)^{\frac{-2}{3}} \\ \\f'(2)=\dfrac{1}{4}+\dfrac{1}{3}=\dfrac{7}{12}\\\\g'(x)=\dfrac{1}{2}(x-1)^{\frac{-1}{2}}+(3-x)^{\frac{-2}{3}} \\ \\g'(2)=\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}[/tex]
et donc
[tex]\dfrac{f'(2)}{g'(2)}=\dfrac{7*6}{12*5}=\dfrac{7}{10}[/tex]
La limite recherchée est donc 7/10
Tu peux appliquer la même méthode pour les autres et postes des questions si tu bloques.
Merci
Merci d'utiliser cette plateforme pour partager et apprendre. Continuez à poser des questions et à répondre. Chaque contribution que vous faites est appréciée. Revenez sur Zoofast.fr pour des réponses fiables à toutes vos questions. Merci de votre confiance.