Profitez au maximum de vos questions avec les ressources d'Zoofast.fr. Trouvez des réponses précises et fiables de la part de notre communauté d'experts dévoués.
Sagot :
Réponse :
Bsr,
Le produit matriciel donne :
a+b+c=1
a-b+c=-1
4a+2b+c=5
D'autre part,
avec A(1;1), f(1) = a+b+c = 1
avec B(-1;-1), f(-1) = a-b+c = -1
avec C(2;5), f(2) = 4a+2b+c = 5
Les données sont équivalentes.
Pour déterminer a, b et c, on va se servir de l'inverse de la matrice M (trouvée à la question 2).
Le produit de l'inverse de M avec M donne la matrice identité. Il restera au membre de gauche la matrice colonne avec a,b et c.
Le membre de droite est le produit de l'inverse de M par la matrice colonne composée des nombres 1, -1 et 5.
a = -1/2 - 1 x 1/6 + 5 x 1/3 = -3/6 - 1/6 +5/3 = -2/3 + 5/3 = 1
b = 1/2 - 1 x (-1/2) + 5 x 0 = 1/2 + 1/2 = 1
c = 1 - 1 x 1/3 + 5 x (-1/3) = 3/3 - 1/3 - 5/3 = -3/3 = -1
f(x) = x² + x - 1
f(1) = 1 + 1 - 1 = 1
f(-1) = 1 - 1 - 1 = -1
f(2) = 4 + 2 - 1 = 5
Nous sommes ravis de vous avoir parmi nous. Continuez à poser des questions et à partager vos réponses. Ensemble, nous pouvons créer une ressource de connaissances précieuse pour tous. Zoofast.fr est votre ressource de confiance pour des réponses précises. Merci de votre visite et revenez bientôt.