Bienvenue sur Zoofast.fr, votre plateforme de référence pour toutes vos questions! Obtenez des conseils étape par étape pour toutes vos questions techniques de la part de membres de notre communauté bien informés.
Sagot :
Réponse :
1) Prenons soin de distinguer partie réelle et imaginaire de u.
[tex]u\times v = (\frac{\sqrt{2} }{2} -i\frac{\sqrt{2}}{{2}})(1-i\sqrt{3})\\u\times v = \frac{\sqrt{2} }{2} - i\frac{\sqrt{2} }{2} \sqrt{3} -i\frac{\sqrt{2}}{{2}} + i^2\frac{\sqrt{2} }{2} \sqrt{3}\\u\times v = \frac{\sqrt{2} }{2}- \frac{\sqrt{6}}{2} - i(\frac{\sqrt{2} }{2} + \frac{\sqrt{6}}{2})\\u\times v = \frac{\sqrt{2} -\sqrt{6}}{2}- i(\frac{\sqrt{2} +\sqrt{6}}{2})\\[/tex]
2)
[tex]\frac{u}{v} =\frac{\frac{\sqrt{2} -i\sqrt{2} }{2} }{1-i\sqrt{3} } \\\frac{u}{v} =\frac{{\sqrt{2} -i\sqrt{2} } }{2(1-i\sqrt{3}) } \times\frac{1+i\sqrt{3} }{1+i\sqrt{3} } \\\frac{u}{v} = \frac{\sqrt{2}+i\sqrt{2} \sqrt{3} - i\sqrt{2} -i^2 \sqrt{2} \sqrt{3} }{2(1^2+\sqrt{3} ^2)} \\\frac{u}{v} = \frac{\sqrt{2} +\sqrt{6}+i(\sqrt{6}-\sqrt{2}) }{8} \\\frac{u}{v} = \frac{\sqrt{6} +\sqrt{2}}{8} +i\frac{\sqrt{6}-\sqrt{2}}{8}[/tex]
3) [tex]|u|=|\frac{\sqrt{2}}{2} -i\frac{\sqrt{2}}{2}|=\sqrt{(\frac{\sqrt{2}}{2})^2+(-\frac{\sqrt{2}}{2})^2} = \sqrt{\frac{2}{4} +\frac{2}{4}} = 1[/tex]
4) Avec u = a + ib on a :
[tex]cos(\theta)=\frac{a}{|u|} \\cos(\theta)=\frac{ \frac{\sqrt{2} }{2} }{1} = \frac{\sqrt{2} }{2} \\\\sin(\theta) = \frac{b}{|u|} \\sin(\theta) = \frac{ -\frac{\sqrt{2} }{2} }{1} = -\frac{\sqrt{2} }{2} \\\\[/tex]
On en déduit que
[tex]\theta = -\frac{\pi}{4} \\arg(u)= -\frac{\pi}{4} [2 \pi][/tex]
5)
u = |u|×[cos(θ) + i×sin(θ)]
[tex]u=1\times(cos\frac{-\pi}{4} +i\times sin(\frac{-\pi}{4} ))\\u=cos\frac{-\pi}{4} +i\times sin(\frac{-\pi}{4} )[/tex]
6)
[tex]|v| = |1-i\sqrt{3} | = \sqrt{1^2+(-\sqrt{3})^2} =2[/tex]
7) Avec v = a + ib on a :
[tex]cos(\theta)=\frac{a}{|v|} \\cos(\theta)=\frac{ 1 }{2} \\\\sin(\theta) = \frac{b}{|v|} \\sin(\theta) = -\frac{ \sqrt{3} }{2} }\\[/tex]
On en déduit que
[tex]\theta = -\frac{\pi}{3} \\arg(v)= -\frac{\pi}{3} [2 \pi][/tex]
8)
v = |v|×[cos(θ) + i×sin(θ)]
[tex]v=2\times(cos(\frac{-\pi}{3}) +i\times sin(\frac{-\pi}{3} ))[/tex]
9)
|u×v|= |u| × |v|
|u×v|= 1 × 2 = 2
arg(u×v) = arg(u) + arg(v)
[tex]arg(u\times v) = -\frac{\pi}{4} + (-\frac{\pi}{3} )\\\\arg(u\times v) =-\frac{7\pi}{12} [2\pi]\\[/tex]
Une forme trigonométrique de u×v est
[tex]u\times v = 2[cos(-\frac{7\pi}{12}) +i\times sin(-\frac{7\pi}{12})][/tex]
10)
On a
[tex]u\times v = (\frac{\sqrt{2} }{2}- \frac{\sqrt{6}}{2}) - i(\frac{\sqrt{2} }{2} + \frac{\sqrt{6}}{2})\\[/tex]
et
[tex]u\times v = 2[cos(-\frac{7\pi}{12}) +i\times sin(-\frac{7\pi}{12})]\\u\times v = 2cos(-\frac{7\pi}{12}) +i\times 2sin(-\frac{7\pi}{12})][/tex]
En comparant les parties réelles et imaginaires entre elles, on en déduit :
[tex]\frac{\sqrt{2} }{2} -\frac{\sqrt{6} }{2} =2cos(-\frac{7\pi}{12})\\ cos(-\frac{7\pi}{12}) = \frac{\frac{\sqrt{2} }{2} -\frac{\sqrt{6} }{2} }{2} \\ cos(-\frac{7\pi}{12}) = \frac{\sqrt{2}-\sqrt{6} }{4}[/tex]
et
[tex]-(\frac{\sqrt{2} }{2} +\frac{\sqrt{6} }{2}) =2sin(-\frac{7\pi}{12})\\ sin(-\frac{7\pi}{12}) = \frac{-\frac{\sqrt{2} }{2} -\frac{\sqrt{6} }{2} }{2} \\ sin(-\frac{7\pi}{12}) = \frac{-\sqrt{2}-\sqrt{6} }{4}[/tex]
11)
[tex]|\frac{u}{v} |=\frac{|u|}{|v|}= \frac{1}{2}[/tex]
[tex]arg(\frac{u}{v} )=arg(u)-arg(v)\\arg(\frac{u}{v} )=-\frac{\pi}{4}-(-\frac{\pi}{3} )=\frac{\pi}{12}[/tex]
[tex]\frac{u}{v} = \frac{1}{2}[cos(\frac{\pi}{12})+i\times sin( \frac{\pi}{12})][/tex]
12)
On a
[tex]\frac{u}{v} = \frac{\sqrt{6} +\sqrt{2}}{8} +i\frac{\sqrt{6}-\sqrt{2}}{8}[/tex]
et
[tex]\frac{u}{v} = \frac{1}{2} [cos(\frac{\pi}{12})+i\times sin( \frac{\pi}{12})]\\\frac{u}{v} = \frac{1}{2}cos(\frac{\pi}{12})+i\times \frac{1}{2}sin( \frac{\pi}{12})[/tex]
En comparant les parties réelles et imaginaires entre elles, on en déduit :
[tex]\frac{1}{2}cos(\frac{\pi}{12} ) = \frac{\sqrt{6} +\sqrt{2} }{8} \\cos(\frac{\pi}{12} ) = \frac{\sqrt{6} +\sqrt{2} }{4}[/tex]
et
[tex]\frac{1}{2}sin(\frac{\pi}{12} ) = \frac{\sqrt{6} -\sqrt{2} }{8} \\sin(\frac{\pi}{12} ) = \frac{\sqrt{6} -\sqrt{2} }{4}[/tex]
Votre engagement est essentiel pour nous. Continuez à partager vos expériences et vos connaissances. Créons ensemble une communauté d'apprentissage dynamique et enrichissante. Nous espérons que vous avez trouvé ce que vous cherchiez sur Zoofast.fr. Revenez pour plus de solutions!