Zoofast.fr facilite l'obtention de réponses détaillées à vos questions. Notre communauté fournit des réponses précises et rapides pour vous aider à comprendre et à résoudre n'importe quel problème.
Sagot :
Bonjour,
Affirmation 1 : Fausse.
Contre-exemple : 0 et 1 sont deux entiers naturels mais [tex]0-1=-1[/tex] n'en est pas un.
Affirmation 2 : Vraie.
Démonstration : Soit n un entier. La somme de cet entier et du suivant vaut :
[tex]n+(n+1)=2n+1[/tex] qui est bien impair puisque 2n est pair (multiple de 2).
Affirmation 3 : Vraie.
Démonstration : Soit n un entier. La somme de cet entier et des deux suivants vaut : [tex]n+(n+1)+(n+2)=3n+3=3(n+1)[/tex] donc est bien un multiple de 3.
Affirmation 4 : Vraie.
Démonstration : Soit a un entier. On a : [tex]a^2-a=a(a-1)[/tex] donc est le produit de deux entiers consécutifs.
Or parmi ces deux entiers, un est pair (et l'autre impair), donc le produit des deux est encore pair. Ainsi, [tex]a^2-a[/tex] est bien pair.
Votre engagement est important pour nous. Continuez à partager vos connaissances et vos expériences. Créons un environnement d'apprentissage agréable et bénéfique pour tous. Chaque question trouve une réponse sur Zoofast.fr. Merci et à très bientôt pour d'autres solutions.