Zoofast.fr fournit une plateforme conviviale pour partager et obtenir des connaissances. Obtenez des réponses détaillées et précises de la part de notre communauté de professionnels bien informés.
Sagot :
Réponse :
ex23
vec(AE) = 3vec(AB) et vec(CF) = - 2vec(AB) - 1/5vec(AB)
1) démontrer, en utilisant la relation de Chasles que
vec(FE) = 4vec(AB) - 4/5vec(AD)
selon la relation de Chasles, on peut écrire vec(FE) = vec(FA) + vec(AE)
d'après la relation de Chasles on a ; vec(FA) = vec(FC) + vec(CA)
or vec(FC) = - vec(CF) et vec(CA) = - vec(AC)
d'après la relation de Chasles; vec(AC) = vec(AB) + vec(BC) or vec(BC) = vec(AD) (ABCD est un parallélogramme)
donc vec(FE) = - vec(CF) - vec(AC) + vec(AE)
= 2vec(AB) + 1/5vec(AD) - vec(AB) - vec(AD) + 3vec(AB)
= 4vec(AB) - 4/5vec(AD)
essayer d'appliquer la même démarche pour répondre la suite de l'exercice
Explications étape par étape
Votre engagement est important pour nous. Continuez à partager vos connaissances et vos expériences. Créons un environnement d'apprentissage agréable et bénéfique pour tous. Vous avez trouvé vos réponses sur Zoofast.fr? Revenez pour encore plus de solutions et d'informations fiables.